scholarly journals Actin binding to WH2 domains regulates nuclear import of the multifunctional actin regulator JMY

2012 ◽  
Vol 23 (5) ◽  
pp. 853-863 ◽  
Author(s):  
J. Bradley Zuchero ◽  
Brittany Belin ◽  
R. Dyche Mullins

Junction-mediating and regulatory protein (JMY) is a regulator of both transcription and actin filament assembly. In response to DNA damage, JMY accumulates in the nucleus and promotes p53-dependent apoptosis. JMY's actin-regulatory activity relies on a cluster of three actin-binding Wiskott–Aldrich syndrome protein homology 2 (WH2) domains that nucleate filaments directly and also promote nucleation activity of the Arp2/3 complex. In addition to these activities, we find that the WH2 cluster overlaps an atypical, bipartite nuclear localization sequence (NLS) and controls JMY's subcellular localization. Actin monomers bound to the WH2 domains block binding of importins to the NLS and prevent nuclear import of JMY. Mutations that impair actin binding, or cellular perturbations that induce actin filament assembly and decrease the concentration of monomeric actin in the cytoplasm, cause JMY to accumulate in the nucleus. DNA damage induces both cytoplasmic actin polymerization and nuclear import of JMY, and we find that damage-induced nuclear localization of JMY requires both the WH2/NLS region and importin β. On the basis of our results, we propose that actin assembly regulates nuclear import of JMY in response to DNA damage.

2000 ◽  
Vol 353 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Lyndall J. BRIGGS ◽  
Ricky W. JOHNSTONE ◽  
Rachel M. ELLIOT ◽  
Chong-Yun XIAO ◽  
Michelle DAWSON ◽  
...  

Members of the interferon-induced class of nuclear factors possess a putative CcN motif, comparable with that within proteins such as the simian virus 40 large tumour antigen (T-ag), which confers phosphorylation-mediated regulation of nuclear-localization sequence (NLS)-dependent nuclear import. Here we examine the functionality of the interferon-induced factor 16 (IFI 16) CcN motif, demonstrating its ability to target a heterologous protein to the nucleus, and to be phosphorylated specifically by the CcN-motif-phosphorylating protein kinase CK2 (CK2). The IFI 16 NLS, however, has novel properties, conferring ATP-dependent nuclear import completely independent of cytosolic factors, as well as binding to nuclear components. The IFI 16 NLS is not recognized with high affinity by the NLS-binding importin heterodimer, and transport mediated by it is insensitive to non-hydrolysable GTP analogues. The IFI 16 NLS thus mediates nuclear import through a pathway completely distinct from that of conventional NLSs, such as that of T-ag, but intriguingly resembling that of the NLS of the HIV-1 transactivator protein Tat. Since the IFI 16 CK2 site enhances nuclear import through facilitating binding to nuclear components, this represents a novel mechanism by which the site regulates nuclear-protein import, and constitutes a difference between the IFI 16 and Tat NLSs that may be of importance in the immune response.


2000 ◽  
Vol 113 (15) ◽  
pp. 2771-2781
Author(s):  
P.S. Subramaniam ◽  
J. Larkin ◽  
M.G. Mujtaba ◽  
M.R. Walter ◽  
H.M. Johnson

We have recently shown that the nuclear localization of IFN gamma is mediated by a polybasic nuclear localization sequence (NLS) in its C terminus. This NLS is required for the full expression of biological activity of IFN gamma, both extracellularly and intracellularly. We now show that this NLS plays an integral intracellular role in the nuclear translocation of the transcription factor STAT1 alpha activated by IFN gamma. Treatment of IFN gamma with antibodies to the C-terminal region (95–133) containing the NLS blocked the induction of STAT1 alpha nuclear translocation. The antibodies had no effect on nuclear translocation of STAT1 alpha in IFN gamma treated cells. A deletion mutant of human IFN gamma, IFN gamma (1–123), which is devoid of the C-terminal NLS region was found to be biologically inactive, but was still able to bind to the IFN gamma receptor complex on cells with a K(d) similar to that of the wild-type protein. Deletion of the NLS specifically abolished the ability of IFN gamma(1–123) to initiate the nuclear translocation of STAT1 alpha, which is required for the biological activities of IFN gamma following binding to the IFN gamma receptor complex. Thus, the NLS region appears to contribute minimally to extracellular high-affinity receptor-ligand binding, yet exerts a strong functional role in STAT1 alpha nuclear localization. A high-affinity site for the interaction of the C-terminal NLS domain of IFN gamma with a K(d) approx. 3 × 10(−8) M(−1) has been described by previous studies on the intracellular cytoplasmic domain of the IFN gamma receptor alpha-chain. To examine the role of the NLS at the intracellular level, we microinjected neutralizing antibodies raised against the C-terminal NLS domain of IFN gamma into the cytoplasm of cells before treatment of cells with IFN gamma. These intracellular antibodies specifically blocked the nuclear translocation of STAT1 alpha following the subsequent treatment of these cells extracellularly with IFN gamma. These data show that the NLS domain of IFN gamma interacts at an intracellular site to regulate STAT1 alpha nuclear import. A C-terminal peptide of murine IFN gamma, IFN gamma(95–133), that contains the NLS motif, induced nuclear translocation of STAT1 alpha when taken up intracellularly by a murine macrophage cell line. Deletion of the NLS motif specifically abrogated the ability of this intracellular peptide to cause STAT1 alpha nuclear translocation. In cells activated with IFN gamma, IFN gamma was found to as part of a complex that contained STAT1 alpha and the importin-alpha analog Npi-1, which mediates STAT1 alpha nuclear import. The tyrosine phosphorylation of STAT1 alpha, the formation of the complex IFN gamma/Npi-1/STAT1 alpha complex and the subsequent nuclear translocation of STAT1 alpha were all found to be dependent on the presence of the IFN gamma NLS. Thus, the NLS of IFN gamma functions intracellularly to directly regulate the activation and ultimate nuclear translocation STAT1 alpha.


Gene ◽  
2004 ◽  
Vol 337 ◽  
pp. 71-77 ◽  
Author(s):  
Amilcar Arenal ◽  
Rafael Pimentel ◽  
Carmen Garcı́a ◽  
Eulogio Pimentel ◽  
Peter Aleström

1998 ◽  
Vol 273 (3) ◽  
pp. 1623-1628 ◽  
Author(s):  
Athina Efthymiadis ◽  
Lyndall J. Briggs ◽  
David A. Jans

2001 ◽  
Vol 154 (5) ◽  
pp. 951-960 ◽  
Author(s):  
Renée S. Polizotto ◽  
Martha S. Cyert

Calcineurin is a conserved Ca2+/calmodulin-specific serine-threonine protein phosphatase that mediates many Ca2+-dependent signaling events. In yeast, calcineurin dephosphorylates Crz1p, a transcription factor that binds to the calcineurin-dependent response element, a 24-bp promoter element. Calcineurin-dependent dephosphorylation of Crz1p alters Crz1p nuclear localization. This study examines the mechanism by which calcineurin regulates the nuclear localization of Crz1p in more detail. We describe the identification and characterization of a novel nuclear localization sequence (NLS) in Crz1p, which requires both basic and hydrophobic residues for activity, and show that the karyopherin Nmd5p is required for Crz1p nuclear import. We also demonstrate that the binding of Crz1p to Nmd5p is dependent upon its phosphorylation state, indicating that nuclear import of Crz1p is regulated by calcineurin. Finally, we demonstrate that residues in both the NH2- and COOH-terminal portions of Crz1p are required for regulated Crz1p binding to Nmd5p, supporting a model of NLS masking for regulating Crz1p nuclear import.


Sign in / Sign up

Export Citation Format

Share Document