gamma receptor
Recently Published Documents


TOTAL DOCUMENTS

606
(FIVE YEARS 98)

H-INDEX

58
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Ulrik Fahnoe ◽  
Andreas Ronit ◽  
Ronan M.G. Berg ◽  
Sofie E.G. Joergensen ◽  
Trine H. Mogensen ◽  
...  

Background: It is unknown whether the complex immunopathogenesis of COVID-19 acute respiratory distress syndrome (CARDS) differs from that of non-COVID-19 ARDS. Moreover, the effects of systemic dexamethasone (DXM) treatment on pulmonary immunity in COVID-19 remain insufficiently understood. Objective: To understand immune regulation in the lungs of CARDS and critically ill non-COVID-19 patients through gene expression profiling. Methods: Transcriptomic RNA-seq analysis of bronchoalveolar lavage fluid (BALF) from 21 patients: 13 with CARDS (non-DXM or DXM-treated) and 8 with non-COVID-19 ARDS and/or sepsis (all non-DXM-treated). Functional analysis was performed using gene ontology and a blood transcription module, and gene expression of select pro-inflammatory cytokines, interferon-stimulated genes (ISGs) and auto-IFN antibodies were assessed. Results: Median (range) time of COVID-19 symptoms were 11 (8-20) days and BALF was collected 32 (6-65) hours after intubation. We found 550 and 2173 differentially expressed genes in patients with non-DXM-CARDS and DXM-CARDS, respectively. DXM-CARDS was characterized by upregulation of genes related to pulmonary innate and adaptive immunity, notably B-cell and complement pathway activation, antigen presentation, phagocytosis and FC-gamma receptor signalling. Pro-inflammatory genes were not differentially expressed in CARDS vs. non-COVID-19, nor did they differ according to DXM. Most ISGs were specifically upregulated in CARDS, particularly in non-DXM-CARDS. Auto-IFN autoantibodies were detectable in BALF of some CARDS patients. Conclusion: DXM treatment was not associated with regulation of pro-inflammatory pathways in CARDS but with regulation of other specific local innate and adaptive immune responses. These results challenge the concept of a COVID-19 specific cytokine storm.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adam D. Wegman ◽  
Hengsheng Fang ◽  
Alan L. Rothman ◽  
Stephen J. Thomas ◽  
Timothy P. Endy ◽  
...  

Dengue virus (DENV) is a prevalent human pathogen, infecting approximately 400 million individuals per year and causing symptomatic disease in approximately 100 million. A distinct feature of dengue is the increased risk for severe disease in some individuals with preexisting DENV-specific immunity. One proposed mechanism for this phenomenon is antibody-dependent enhancement (ADE), in which poorly-neutralizing IgG antibodies from a prior infection opsonize DENV to increase infection of Fc gamma receptor-bearing cells. While IgM and IgG are the most commonly studied DENV-reactive antibody isotypes, our group and others have described the induction of DENV-specific serum IgA responses during dengue. We hypothesized that monomeric IgA would be able to neutralize DENV without the possibility of ADE. To test this, we synthesized IgG and IgA versions of two different DENV-reactive monoclonal antibodies. We demonstrate that isotype-switching does not affect the antigen binding and neutralization properties of the two mAbs. We show that DENV-reactive IgG, but not IgA, mediates ADE in Fc gamma receptor-positive K562 cells. Furthermore, we show that IgA potently antagonizes the ADE activity of IgG. These results suggest that levels of DENV-reactive IgA induced by DENV infection might regulate the overall IgG mediated ADE activity of DENV-immune plasma in vivo, and may serve as a predictor of disease risk.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ida Jarlhelt ◽  
Sif Kaas Nielsen ◽  
Camilla Xenia Holtermann Jahn ◽  
Cecilie Bo Hansen ◽  
Laura Pérez-Alós ◽  
...  

The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to constitute a serious public health threat worldwide. Protective antibody-mediated viral neutralization in response to SARS-CoV-2 infection has been firmly characterized. Where the effects of the antibody response are generally considered to be beneficial, an important biological question regarding potential negative outcomes of a SARS-CoV-2 antibody response has yet to be answered. We determined the distribution of IgG subclasses and complement activation levels in plasma from convalescent individuals using in-house developed ELISAs. The IgG response towards SARS-CoV-2 receptor-binding domain (RBD) after natural infection appeared to be mainly driven by IgG1 and IgG3 subclasses, which are the main ligands for C1q mediated classical complement pathway activation. The deposition of the complement components C4b, C3bc, and TCC as a consequence of SARS-CoV-2 specific antibodies were depending primarily on the SARS-CoV-2 RBD and significantly correlated with both IgG levels and disease severity, indicating that individuals with high levels of IgG and/or severe disease, might have a more prominent complement activation during viral infection. Finally, freshly isolated monocytes and a monocyte cell line (THP-1) were used to address the cellular mediated inflammatory response as a consequence of Fc-gamma receptor engagement by SARS-CoV-2 specific antibodies. Monocytic Fc gamma receptor charging resulted in a significant rise in the secretion of the pro-inflammatory cytokine TNF-α. Our results indicate that SARS-CoV-2 antibodies might drive significant inflammatory responses through the classical complement pathway and via cellular immune-complex activation that could have negative consequences during COVID-19 disease. We found that increased classical complement activation was highly associated to COVID-19 disease severity. The combination of antibody-mediated complement activation and subsequent cellular priming could constitute a significant risk of exacerbating COVID-19 severity.


Author(s):  
Zijun Zhou ◽  
Iris Hollink ◽  
Arjan Bouman ◽  
Mirthe Lourens ◽  
Rik Brooimans ◽  
...  

Background: Defects in IFN–gamma receptor (IFN-γR) signaling via STAT1 leads to susceptibility to infection by otherwise weak pathogenic mycobacteria, resulting in mendelian susceptibility to mycobacterial disease. We identified three patients presented with disseminated mycobacterial infections caused by M. avium, M. persicum or M. bovis BCG respectively. Whole-exome sequencing (WES) was used as the first line diagnostic approach, however in all patients additional analysis was crucial to make the definite diagnosis. Method: WES, SNP array and long range PCR were performed to identify the genetic defects. Expression of IFNGR1, STAT1, CD64, SOCS1 and phosphorylation of STAT1 were determined after stimulation with IFN-α or IFN-γ. Results: In Patient 1, only one heterozygous variant p.(Val63Gly) in the IFNGR1 gene was identified by WES. Additional genetic analysis identified a second complex Alu-insertion in IFNGR1. Patient 2 was compound heterozygous for the null p.(Val68Lysfs*6) variant and the hypomorphic p.(Ile37Thr) variant in IFNGR1. In Patient 3 a novel variant in the STAT1 gene p.(Asn460Ile) was identified. Patients 1 and 2 had reduced expression of IFN-γR1. All patients had reduced phosphorylation of STAT1 and absent induction of SOCS1 after IFN-γ stimulation. While STAT1 phosphorylation was normal after IFN–α stimulation in Patient 1 and 2, and mildly reduced in Patient 3. Conclusion: We conclude that functional assays are crucial to assess the extent of IFN-γR signaling defects when new combinations of bi-allelic or non-conclusive genetic variants are found, which is important in the determination of clinical treatment.


2021 ◽  
Author(s):  
Stephania Vazquez-Rodriguez ◽  
Lourdes A. Arriaga-Pizano ◽  
Ismael Mancilla-Herrera ◽  
Jessica Prieto-Chávez ◽  
Roberto Arizmendi-Villanueva ◽  
...  

AbstractObjectiveThe use of intravenous human immunoglobulin (IVIg) as adjuvant therapy for sepsis has been shown efficacious in adults, but its use in pregnant women and newborns is controversial. Fc gamma receptors (FcγRs) support the ability of IVIg to stimulate the synthesis of inflammatory mediators and promote phagocytosis by leukocytes, however, the FcγRs expression is differential between adults and neonates. We aimed to explore the effect of IVIg in monocytes and neutrophils from mother and neonates in whole blood cultures.Study designWhole blood from adults, maternal, and neonates were incubated with LPS and/or IVIg. After 0, 24, and 48 hours, we measured the expression of FcγRs (CD16, CD32, and CD64) and bacterial phagocytosis by monocytes and neutrophils. Also, the concentration of pro-inflammatory cytokines/chemokines was determined.ResultsFcγRs expression is quite similar among groups, and the LPS or IVIg challenge did not change the FcγRs expression on monocytes and neutrophils. Also, the LPS or IVIg challenge did not modify phagocytosis capacity in any group. However, IVIg induces a higher IL-8 response in neonates than in adults.ConclusionOur results suggest that the IL-8 response to IVIg in whole blood from neonates is not dependent on differential FcγR expression.Key messagesIVIg challenge in neonates or adults does not induce FcγR change expression on monocytes or neutrophilsIVIg induces higher IL-8 response in neonates than in adults


2021 ◽  
Author(s):  
Natasha M Clark ◽  
Sanath Kumar Janaka ◽  
William Hartman ◽  
Susan Stramer ◽  
Erin Goodhue ◽  
...  

The novel coronavirus SARS-CoV2, which causes COVID-19, has resulted in the death of nearly 4 million people within the last 18 months. While preventive vaccination and monoclonal antibody therapies have been rapidly developed and deployed, early in the pandemic the use of COVID-19 convalescent plasma (CCP) was a common means of passive immunization, with the theoretical risk of antibody-dependent enhancement (ADE) of viral infection remaining undetermined. Though vaccines elicit a strong and protective immune response, and transfusion of CCP with high titers of neutralization activity are correlated with better clinical outcomes, the question of whether antibodies in CCP can enhance infection of SARS-CoV2 has not been directly addressed. In this study, we analyzed for and observed passive transfer of neutralization activity with CCP transfusion. Furthermore, to specifically understand if antibodies against the spike protein (S) enhance infection, we measured the anti-S IgG, IgA, and IgM responses and adapted retroviral-pseudotypes to measure virus neutralization with target cells expressing the ACE2 virus receptor and the Fc alpha receptor (FcaR) or Fc gamma receptor IIA (FcgRIIA). Whereas neutralizing activity of CCP correlated best with higher titers of anti-S IgG antibodies, the neutralizing titer was not affected when Fc receptors were present on target cells. These observations support the absence of antibody-dependent enhancement of infection (ADE) by IgG and IgA isotypes found in CCP. The results presented, therefore, support the clinical use of currently available antibody-based treatment including the continued study of CCP transfusion strategies.


2021 ◽  
Author(s):  
Jose J Garrido ◽  
Matias Medina ◽  
Felipe Bravo ◽  
Sarah McGee ◽  
Francisco Fuentes ◽  
...  

Despite SARS-CoV-2 being a "novel" coronavirus, several studies suggest that detection of anti-spike IgG early in infection may be attributable to the amplification of humoral memory responses against seasonal hCoVs in severe COVID-19 patients. In this study, we examined this concept by characterizing anti-spike IgG from a cohort of non-hospitalized convalescent individuals with a spectrum of COVID-19 severity. We observed that anti-spike IgG levels positively correlated with disease severity, higher IgG cross-reactivity against betacoronaviruses (SARS-CoV-1 and OC43), and higher levels of proinflammatory Fc gamma receptor 2a and 3a (FcγR2a & FcγR3a) activation. In examining the levels of IgG targeting betacoronavirus conserved and immunodominant epitopes versus disease severity, we observed a positive correlation with the levels of IgG targeting the conserved S2'FP region, and an inverse correlation with two conserved epitopes around the heptad repeat (HR) 2 region. In comparing the levels of IgG targeting non-conserved epitopes, we observed that only one of three non-conserved immunodominant epitopes correlated with disease severity. Notably, the levels of IgG targeting the receptor binding domain (RBD) were inversely correlated with severity. Importantly, targeting of the RBD and HR2 regions have both been shown to mediate SARS-CoV-2 neutralization. These findings show that, aside from antibody (Ab) targeting of the RBD region, humoral memory responses against seasonal betacoronaviruses are potentially an important factor in dictating COVID-19 severity, with anti-HR2-dominant Ab profiles representing protective memory responses, while an anti-S2'FP dominant Ab profiles indicate deleterious recall responses. Though these profiles are masked in whole antigen profiling, these analyses suggest that distinct Ab memory responses are detectable with epitope targeting analysis. These findings have important implications for predicting severity of SARS-CoV-2 infections (primary and reinfections), and may predict vaccine efficacy in subpopulations with different dominant antibody epitope profiles.


2021 ◽  
Author(s):  
Adam D. Wegman ◽  
HengSheng Fang ◽  
Alan L. Rothman ◽  
Stephen J. Thomas ◽  
Timothy P. Endy ◽  
...  

AbstractDengue virus (DENV) is a prevalent human pathogen, infecting approximately 400 million individuals per year and causing symptomatic disease in approximately 100 million. A distinct feature of dengue is the increased risk for severe disease in some individuals with preexisting DENV-specific immunity. One proposed mechanism for this phenomenon is antibody-dependent enhancement (ADE), in which poorly-neutralizing IgG antibodies from a prior infection opsonize DENV to increase infection of Fc gamma receptor-bearing cells. While IgM and IgG are the most commonly studied DENV-reactive antibody isotypes, our group and others have described the induction of DENV-specific serum IgA responses during dengue. We hypothesized that monomeric IgA would be able to neutralize DENV without the possibility of ADE. To test this, we synthesized IgG and IgA versions of two different DENV-reactive monoclonal antibodies. We demonstrate that isotype-switching does not affect the antigen binding and neutralization properties of the two mAbs. We show that DENV-reactive IgG, but not IgA, mediates ADE in an Fc gamma receptor-positive K562 cells. Furthermore, we show that IgA potently antagonizes the ADE activity of IgG. These results suggest that levels of serum DENV-reactive IgA induced by DENV infection might regulate the overall ADE activity of DENV-immune plasma in vivo and warrants further study as a predictor of disease risk and/or therapeutic.


2021 ◽  
Vol 12 ◽  
Author(s):  
Markus Wahrmann ◽  
Bernd Döhler ◽  
Marie-Luise Arnold ◽  
Sabine Scherer ◽  
Katharina A. Mayer ◽  
...  

The functional Fc gamma receptor (FcγR) IIIA polymorphism FCGR3A-V/F158 was earlier suggested to determine the potential of donor-specific HLA antibodies to trigger microcirculation inflammation, a key lesion of antibody-mediated renal allograft rejection. Associations with long-term transplant outcomes, however, have not been evaluated to date. To clarify the impact of FCGR3A-V/F158 polymorphism on kidney transplant survival, we genotyped a cohort of 1,940 recipient/donor pairs. Analyzing 10-year death-censored allograft survival, we found no significant differences in relation to FCGR3A-V/F158. There was also no independent survival effect in a multivariable Cox model. Similarly, functional polymorphisms in two other activating FcγR, FCGR2A-H/R131 (FcγRIIA) and FCGR3B-NA1/NA2 (FcγRIIIB), were not associated with outcome. There were also no significant survival differences among patient subgroups at increased risk of rejection-related injury, such as pre-sensitized recipients (> 0% panel reactivity; n = 438) or recipients treated for rejection within the first year after transplantation (n = 229). Our study results suggest that the earlier shown association of FcγR polymorphism with microcirculation inflammation may not be strong enough to exert a meaningful effect on graft survival.


Sign in / Sign up

Export Citation Format

Share Document