scholarly journals Imaging the recruitment and loss of proteins and lipids at single sites of calcium-triggered exocytosis

2016 ◽  
Vol 27 (15) ◽  
pp. 2423-2434 ◽  
Author(s):  
Adam J. Trexler ◽  
Kem A. Sochacki ◽  
Justin W. Taraska

How and when the dozens of molecules that control exocytosis assemble in living cells to regulate the fusion of a vesicle with the plasma membrane is unknown. Here we image with two-color total internal reflection fluorescence microscopy the local changes of 27 proteins at single dense-core vesicles undergoing calcium-triggered fusion. We identify two broad dynamic behaviors of exocytic molecules. First, proteins enriched at exocytic sites are associated with DCVs long before exocytosis, and near the time of membrane fusion, they diffuse away. These proteins include Rab3 and Rab27, rabphilin3a, munc18a, tomosyn, and CAPS. Second, we observe a group of classical endocytic proteins and lipids, including dynamins, amphiphysin, syndapin, endophilin, and PIP2, which are rapidly and transiently recruited to the exocytic site near the time of membrane fusion. Dynamin mutants unable to bind amphiphysin were not recruited, indicating that amphiphysin is involved in localizing dynamin to the fusion site. Expression of mutant dynamins and knockdown of endogenous dynamin altered the rate of cargo release from single vesicles. Our data reveal the dynamics of many key proteins involved in exocytosis and identify a rapidly recruited dynamin/PIP2/BAR assembly that regulates the exocytic fusion pore of dense-core vesicles in cultured endocrine beta cells.

2021 ◽  
Author(s):  
Prabhodh S. Abbineni ◽  
Joseph S. Briguglio ◽  
Edwin R. Chapman ◽  
Ronald W. Holz ◽  
Daniel Axelrod

AbstractAlthough many of the proteins of secretory granules have been identified, little is known about their molecular organization and diffusion characteristics. Granule-plasma membrane fusion can only occur when proteins that enable fusion are present at the granule-plasma membrane contact. Thus, the mobility of granule membrane proteins may be an important determinant of fusion pore formation and expansion. To address this issue, we measured the mobility of (fluorophore-tagged) vesicle associated membrane protein 2 (VAMP2), synaptotagmin 1 (Syt1), and synaptotagmin 7 (Syt7) in chromaffin granule membranes in living chromaffin cells. We used a method that is not limited by standard optical resolution. A bright flash of strongly decaying evanescent field (∼80 nm exponential decay constant) produced by total internal reflection (TIR) was used to photobleach GFP-labeled proteins in the granule membrane. Fluorescence recovery occurs as unbleached protein in the granule membrane distal from the glass interface diffuses into the more bleached proximal regions, thereby enabling the measurement of diffusion coefficients. The studies revealed that VAMP2, Syt1, and Syt7 are relatively immobile in chromaffin granules membranes with diffusion constants of ≤ 3 × 10−10 cm2/s. Utilizing these diffusion parameters and the known density of VAMP2 and Syt 1 on synaptic vesicles, we estimated the time required for these proteins to arrive at a nascent fusion site to be tens of milliseconds. We propose that the mobilities of secretory granule SNARE and Syt proteins, heretofore unappreciated factors, influence the kinetics of exocytosis and protein discharge.Significance StatementIn eukaryotic cells, secretory vesicles fuse with the plasma membrane to secrete chemical transmitters, hormones and proteins that enable diverse physiological functions including neurotransmission. Fusion proteins need to be assembled at the fusion site in sufficient number in order to enable membrane fusion. However, the diffusion characteristics of fusogenic proteins on secretory vesicles remained unknown. Here we used a novel method not limited by standard optical resolution to measure the diffusion of VAMP2 and synaptotagmins on chromaffin granule membranes. We found they have limited mobility. The time required for these proteins to reach the granule-plasma membrane contact site suggests that their limited mobility likely influences the kinetics of membrane fusion and subsequent fusion pore expansion.


2001 ◽  
Vol 7 (S2) ◽  
pp. 34-35
Author(s):  
Derek Toomre ◽  
Patrick Keller ◽  
Elena Diaz ◽  
Jamie White ◽  
Kai Simons

Post-Golgi sorting of different classes of newly synthesized proteins and lipids is central to the generation and maintenance of cellular polarity. to directly visualize the dynamics and location of apical/basolateral sorting and trafficking we used fast time-lapse multicolor video microscopy in living cells. Specifically, green fluorescent protein color variants (cyan, CFP; yellow, YFP) of apical cargo (GPI-anchored) and basolateral cargo (vesicular stomatitis virus glycoprotein, VSVG) were generated; see FIG 1. Fast dual color fluorescence video microscopy allowed visualization with high temporal and spatial resolution. Our studies revealed that apical and basolateral cargo progressively segregated into large domains in Golgi/TGN structures, excluded resident proteins, and exited in separate transport containers. These carries remained distinct and did not merge with endocytic structures en route to the plasma membrane. Interestingly, our data suggest that the primary sorting occurs by lateral segregation in the Golgi, prior to budding (FIG 2). Further characterization of morphological differences of apical versus basolateral transport carriers was achieved using a specialized microscopy technique called total internal reflection (TIR) microscopy. with this approach only the bottom of the cell (<100 nm) was illuminated by an exponentially decaying evanescent “wave” of light. A series of images, taken at ∼1 second intervals, shows a bright “flash” of fluorescence when the vesicle fuse with the plasma membrane and the fluorophore diffuses into the plasma membrane (FIG 3).


2004 ◽  
Vol 279 (50) ◽  
pp. 52677-52684 ◽  
Author(s):  
Mitsunori Fukuda ◽  
Eiko Kanno ◽  
Megumi Satoh ◽  
Chika Saegusa ◽  
Akitsugu Yamamoto

It has recently been proposed that synaptotagmin (Syt) VII functions as a plasma membrane Ca2+sensor for dense-core vesicle exocytosis in PC12 cells based on the results of transient overexpression studies using green fluorescent protein (GFP)-tagged Syt VII; however, the precise subcellular localization of Syt VII is still a matter of controversy (plasma membraneversussecretory granules). In this study we established a PC12 cell line “stably expressing” the Syt VII-GFP molecule and demonstrated by immunocytochemical and immunoelectron microscopic analyses that the Syt VII-GFP protein is localized on dense-core vesicles as well as in other intracellular membranous structures, such as thetrans-Golgi network and lysosomes. Syt VII-GFP forms a complex with endogenous Syts I and IX, but not with Syt IV, and it colocalize well with Syts I and IX in the cellular processes (where dense-core vesicles are accumulated) in the PC12 cell line. We further demonstrated by an N-terminal antibody-uptake experiment that Syt VII-GFP-containing dense-core vesicles undergo Ca2+-dependent exocytosis, the same as endogenous Syt IX-containing vesicles. Moreover, silencing of Syt VII-GFP with specific small interfering RNA dramatically reduced high KCl-dependent neuropeptide Y secretion from the stable PC12 cell line (∼60% of the control cells), whereas the same small interfering RNA had little effect on neuropeptide Y secretion from the wild-type PC12 cells (∼85–90% of the control cells), indicating that the level of endogenous expression of Syt VII molecules must be low. Our results indicate that the targeting of Syt VII-GFP molecules to specific membrane compartment(s) is affected by the transfection method (transient expressionversusstable expression) and suggested that Syt VII molecule on dense-core vesicles functions as a vesicular Ca2+sensor for exocytosis in endocrine cells.


2020 ◽  
Vol 118 (3) ◽  
pp. 488a
Author(s):  
Fan Fan ◽  
Jenifer Wendlick ◽  
Natalia Tamarina ◽  
Yumei Wu ◽  
Shawn Ferguson ◽  
...  

2006 ◽  
Vol 17 (5) ◽  
pp. 2439-2450 ◽  
Author(s):  
Scott Nolan ◽  
Ann E. Cowan ◽  
Dennis E. Koppel ◽  
Hui Jin ◽  
Eric Grote

Mating yeast cells provide a genetically accessible system for the study of cell fusion. The dynamics of fusion pores between yeast cells were analyzed by following the exchange of fluorescent markers between fusion partners. Upon plasma membrane fusion, cytoplasmic GFP and DsRed diffuse between cells at rates proportional to the size of the fusion pore. GFP permeance measurements reveal that a typical fusion pore opens with a burst and then gradually expands. In some mating pairs, a sudden increase in GFP permeance was found, consistent with the opening of a second pore. In contrast, other fusion pores closed after permitting a limited amount of cytoplasmic exchange. Deletion of FUS1 from both mating partners caused a >10-fold reduction in the initial permeance and expansion rate of the fusion pore. Although fus1 mating pairs also have a defect in degrading the cell wall that separates mating partners before plasma membrane fusion, other cell fusion mutants with cell wall remodeling defects had more modest effects on fusion pore permeance. Karyogamy is delayed by >1 h in fus1 mating pairs, possibly as a consequence of retarded fusion pore expansion.


2010 ◽  
Vol 21 (8) ◽  
pp. 1375-1386 ◽  
Author(s):  
Wenyong Xiong ◽  
Ingrid Jordens ◽  
Eva Gonzalez ◽  
Timothy E. McGraw

Insulin stimulates glucose transport by recruiting the GLUT4 glucose transporter to the plasma membrane. Here we use total internal reflection fluorescence microscopy to show that two trafficking motifs of GLUT4, a FQQI motif and a TELE-based motif, target GLUT4 to specialized vesicles that accumulate adjacent to the plasma membrane of unstimulated adipocytes. Mutations of these motifs redistributed GLUT4 to transferrin-containing recycling vesicles adjacent to the plasma membrane, and the degree of redistribution correlated with the increases of the GLUT4 mutants in the plasma membrane of basal adipocytes. These results establish that GLUT4 defaults to recycling endosomes when trafficking to specialized vesicles is disrupted, supporting the hypothesis that the specialized vesicles are derived from an endosomal compartment. Insulin stimulates both the accumulation of GLUT4 in the evanescent field and the fraction of this GLUT4 that is inserted into the plasma membrane. Unexpectedly, these two steps are differentially affected by the development of insulin resistance. We ascribe this selective insulin resistance to inherent differences in the sensitivities of GLUT4 vesicle accumulation and insertion into the plasma membrane to insulin. Differences in insulin sensitivities of various processes may be a general mechanism for the development of the physiologically important phenomenon of selective insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document