scholarly journals Coupling to substrate adhesions drives the maturation of muscle stress fibers into myofibrils within cardiomyocytes

2020 ◽  
Vol 31 (12) ◽  
pp. 1273-1288 ◽  
Author(s):  
Nilay Taneja ◽  
Abigail C. Neininger ◽  
Dylan T. Burnette

Focal adhesions have been known to be involved in the assembly of sarcomere-containing myofibrils for decades. Here, we define several molecular players required for the connection between adhesions and myofibrils and show that the strength of this connection positively correlates with myofibril maturation.

2017 ◽  
Vol 43 (5) ◽  
pp. 1777-1789 ◽  
Author(s):  
Lei Zhang ◽  
Tianrong Ji ◽  
Qin Wang ◽  
Kexin Meng ◽  
Rui Zhang ◽  
...  

Background/Aims: Recent studies provided compelling evidence that stimulation of the calcium sensing receptor (CaSR) exerts direct renoprotective action at the glomerular podocyte level. This protective action may be attributed to the RhoA-dependent stabilization of the actin cytoskeleton. However, the underlying mechanisms remain unclear. Methods: In the present study, an immortalized human podocyte cell line was used. Fluo-3 fluorescence was utilized to determine intracellular Ca2+ concentration ([Ca2+]i), and western blotting was used to measure canonical transient receptor potential 6 (TRPC6) protein expression and RhoA activity. Stress fibers were detected by FITC-phalloidin. Results: Activating CaSR with a high extracellular Ca2+ concentration ([Ca2+]o) or R-568 (a type II CaSR agonist) induces an increase in the [Ca2+]i in a dose-dependent manner. This increase in [Ca2+]i is phospholipase C (PLC)-dependent and is smaller in the absence of extracellular Ca2+ than in the presence of 0.5 mM [Ca2+]o. The CaSR activation-induced [Ca2+]i increase is attenuated by the pharmacological blockage of TRPC6 channels or siRNA targeting TRPC6. These data suggest that TRPC6 is involved in CaSR activation-induced Ca2+ influx. Consistent with a previous study, CaSR stimulation results in an increase in RhoA activity. However, the knockdown of TRPC6 significantly abolished the RhoA activity increase induced by CaSR stimulation, suggesting that TRPC6-dependent Ca2+ entry is required for RhoA activation. The activated RhoA is involved in the formation of stress fibers and focal adhesions in response to CaSR stimulation because siRNA targeting RhoA attenuated the increase in the stress fiber mediated by CaSR stimulation. Moreover, this effect of CaSR activation on the formation of stress fibers is also abolished by the knockdown of TRPC6. Conclusion: TRPC6 is involved in the regulation of stress fiber formation and focal adhesions via the RhoA pathway in response to CaSR activation. This may explain the direct protective action of CaSR agonists.


2002 ◽  
Vol 157 (5) ◽  
pp. 819-830 ◽  
Author(s):  
Takahiro Tsuji ◽  
Toshimasa Ishizaki ◽  
Muneo Okamoto ◽  
Chiharu Higashida ◽  
Kazuhiro Kimura ◽  
...  

The small GTPase Rho acts on two effectors, ROCK and mDia1, and induces stress fibers and focal adhesions. However, how ROCK and mDia1 individually regulate signals and dynamics of these structures remains unknown. We stimulated serum-starved Swiss 3T3 fibroblasts with LPA and compared the effects of C3 exoenzyme, a Rho inhibitor, with those of Y-27632, a ROCK inhibitor. Y-27632 treatment suppressed LPA-induced formation of stress fibers and focal adhesions as did C3 exoenzyme but induced membrane ruffles and focal complexes, which were absent in the C3 exoenzyme-treated cells. This phenotype was suppressed by expression of N17Rac. Consistently, the amount of GTP-Rac increased significantly by Y-27632 in LPA-stimulated cells. Biochemically, Y-27632 suppressed tyrosine phosphorylation of paxillin and focal adhesion kinase and not that of Cas. Inhibition of Cas phosphorylation with PP1 or expression of a dominant negative Cas mutant inhibited Y-27632–induced membrane ruffle formation. Moreover, Crk-II mutants lacking in binding to either phosphorylated Cas or DOCK180 suppressed the Y-27632–induced membrane ruffle formation. Finally, expression of a dominant negative mDia1 mutant also inhibited the membrane ruffle formation by Y-27632. Thus, these results have revealed the Rho-dependent Rac activation signaling that is mediated by mDia1 through Cas phosphorylation and antagonized by the action of ROCK.


2021 ◽  
Author(s):  
Erik S Linklater ◽  
Emily Duncan ◽  
Ke Jun Han ◽  
Algirdas Kaupinis ◽  
Mindaugas Valius ◽  
...  

Rab40b is a SOCS box containing protein that regulates the secretion of MMPs to facilitate extracellular matrix remodeling during cell migration. Here we show that Rab40b interacts with Cullin5 via the Rab40b SOCS domain. We demonstrate that loss of Rab40b/Cullin5 binding decreases cell motility and invasive potential, and show that defective cell migration and invasion stem from alteration to the actin cytoskeleton, leading to decreased invadopodia formation, decreased actin dynamics at the leading edge, and an increase in stress fibers. We also show that these stress fibers anchor at less dynamic, more stable focal adhesions. Mechanistically, changes in the cytoskeleton and focal adhesion dynamics are mediated in part by EPLIN, which we demonstrate to be a binding partner of Rab40b and a target for Rab40b/Cullin5 dependent localized ubiquitylation and degradation. Thus, we propose a model where the Rab40b/Cullin5 dependent ubiquitylation regulates EPLIN localization to promote cell migration and invasion by altering focal adhesion and cytoskeletal dynamics.


2002 ◽  
Vol 227 (6) ◽  
pp. 412-424 ◽  
Author(s):  
Imre L. Szabó ◽  
Rama Pai ◽  
Michael K. Jones ◽  
George R. Ehring ◽  
Hirofumi Kawanaka ◽  
...  

Repair of superficial gastric mucosal injury is accomplished by the process of restitution—migration of epithelial cells to restore continuity of the mucosal surface. Actin filaments, focal adhesions, and focal adhesion kinase (FAK) play crucial roles in cell motility essential for restitution. We studied whether epidermal growth factor (EGF) and/or indomethacin (IND) affect cell migration, actin stress fiber formation, and/or phosphorylation of FAK and tensin in wounded gastric monolayers. Human gastric epithelial monolayers (MKN 28 cells) were wounded and treated with either vehicle or 0.5 mM IND for 16 hr followed by EGF. EGF treatment significantly stimulated cell migration and actin stress fiber formation, and increased FAK localization to focal adhesions, and phosphorylation of FAK and tensin, whereas IND inhibited all these at the baseline and EGF-stimulated conditions. IND-induced inhibition of FAK phosphorylation preceded changes in actin polymerization, indicating that actin depolymerization might be the consequence of decreased FAK activity. In in vivo experiments, rats received either vehicle or IND (5 mg/kg i.g.), and 3 min later, they received water or 5% hypertonic NaCl; gastric mucosa was obtained at 1, 4, and 8 hr after injury. Four and 8 hr after hypertonic injury, FAK phosphorylation was induced in gastric mucosa compared with controls. IND pretreatment significantly delayed epithelial restitution in vivo, and reduced FAK phosphorylation and recruitment to adhesion points, as well as actin stress fiber formation in migrating surface epithelial cells. Our study indicates that FAK, tensin, and actin stress fibers are likely mediators of EGF-stimulated cell migration in wounded human gastric monolayers and potential targets for IND-induced inhibition of restitution.


2020 ◽  
Vol 319 (1) ◽  
pp. G11-G22
Author(s):  
LiKang Chin ◽  
Neil D. Theise ◽  
Abigail E. Loneker ◽  
Paul A. Janmey ◽  
Rebecca G. Wells

This work examines the impact of lipid loading on mechanosensing by human hepatocytes. In cirrhotic livers, the presence of large (although not small) lipid droplets increased nuclear localization of the mechanotransducer YAP. In primary hepatocytes in culture, lipid droplets led to decreased stiffness-induced cell spreading and disrupted focal adhesions and stress fibers; the presence of large lipid droplets resulted in increased YAP nuclear localization. Collectively, the data suggest that lipid droplets induce intracellular mechanical stress.


2001 ◽  
Vol 280 (6) ◽  
pp. C1669-C1679 ◽  
Author(s):  
Kazuo Katoh ◽  
Yumiko Kano ◽  
Mutsuki Amano ◽  
Kozo Kaibuchi ◽  
Keigi Fujiwara

To understand the roles of Rho-kinase and myosin light chain kinase (MLCK) for the contraction and organization of stress fibers, we treated cultured human foreskin fibroblasts with several MLCK, Rho-kinase, or calmodulin inhibitors and analyzed F-actin organization in the cells. Some cells were transfected with green fluorescent protein (GFP)-labeled actin, and the effects of inhibitors were also studied in these living cells. The Rho-kinase inhibitors Y-27632 and HA1077 caused disassembly of stress fibers and focal adhesions in the central portion of the cell within 1 h. However, stress fibers located in the periphery of the cell were not severely affected by the Rho-kinase inhibitors. When these cells were washed with fresh medium, the central stress fibers and focal adhesions gradually reformed, and within 3 h the cells were completely recovered. ML-7 and KT5926 are specific MLCK inhibitors and caused disruption and/or shortening of peripheral stress fibers, leaving the central fibers relatively intact even though their number was reduced. The calmodulin inhibitors W-5 and W-7 gave essentially the same results as the MLCK inhibitors. The MLCK and calmodulin inhibitors, but not the Rho-kinase inhibitors, caused cells to lose the spread morphology, indicating that the peripheral fibers play a major role in keeping the flattened state of the cell. When stress fiber models were reactivated, the peripheral fibers contracted before the central fibers. Thus our study shows that there are at least two different stress fiber systems in the cell. The central stress fiber system is dependent more on the activity of Rho-kinase than on that of MLCK, while the peripheral stress fiber system depends on MLCK.


Sign in / Sign up

Export Citation Format

Share Document