scholarly journals Retraction for Cortical F-Actin, the Exocytic Mode, and Neuropeptide Release in Mouse Chromaffin Cells Is Regulated by Myristoylated Alanine-rich C-Kinase Substrate and Myosin II

2013 ◽  
Vol 24 (8) ◽  
pp. 1251-1251
2009 ◽  
Vol 20 (13) ◽  
pp. 3142-3154 ◽  
Author(s):  
Bryan W. Doreian ◽  
Tiberiu G. Fulop ◽  
Robert L. Meklemburg ◽  
Corey B. Smith

Adrenal medullary chromaffin cells are innervated by the sympathetic splanchnic nerve and translate graded sympathetic firing into a differential hormonal exocytosis. Basal sympathetic firing elicits a transient kiss-and-run mode of exocytosis and modest catecholamine release, whereas elevated firing under the sympathetic stress response results in full granule collapse to release catecholamine and peptide transmitters into the circulation. Previous studies have shown that rearrangement of the cell actin cortex regulates the mode of exocytosis. An intact cortex favors kiss-and-run exocytosis, whereas disrupting the cortex favors the full granule collapse mode. Here, we investigate the specific roles of two actin-associated proteins, myosin II and myristoylated alanine-rich C-kinase substrate (MARCKS) in this process. Our data demonstrate that MARCKS phosphorylation under elevated cell firing is required for cortical actin disruption but is not sufficient to elicit peptide transmitter exocytosis. Our data also demonstrate that myosin II is phospho-activated under high stimulation conditions. Inhibiting myosin II activity prevented disruption of the actin cortex, full granule collapse, and peptide transmitter release. These results suggest that phosphorylation of both MARCKS and myosin II lead to disruption of the actin cortex. However, myosin II, but not MARCKS, is required for the activity-dependent exocytosis of the peptide transmitters.


2004 ◽  
Vol 279 (26) ◽  
pp. 27450-27457 ◽  
Author(s):  
Patricia Ñeco ◽  
Daniel Giner ◽  
Salvador Viniegra ◽  
Ricardo Borges ◽  
Alvaro Villarroel ◽  
...  

Endocrinology ◽  
2008 ◽  
Vol 149 (10) ◽  
pp. 4921-4927 ◽  
Author(s):  
Yong-Soo Park ◽  
Yoon Ha Choi ◽  
Choon-Ho Park ◽  
Kyong-Tai Kim

Adrenal medulla chromaffin cells are neuroendocrine and modified sympathetic ganglion cells. Catecholamines released from chromaffin cells mediate the fight-or-flight response or alert reaction against dangerous conditions. Here we report that short-term treatment with glucocorticoids, released from adrenal cortex cells in response to chronic stress, inhibits activity-dependent potentiation (ADP) of catecholamine release. First, short-term treatment with dexamethasone (DEX), a synthetic glucocorticoid, reduces ADP in a concentration-dependent manner (IC50 324.2 ± 54.5 nm). The inhibitory effect of DEX is not reversed by RU-486 treatment, suggesting that the rapid inhibitory effect of DEX on ADP of catecholamine release is independent of glucocorticoid receptors. Second, DEX treatment reduces the frequency of fusion between vesicles and plasma membrane without affecting calcium influx. DEX disrupts activity-induced vesicle translocation and F-actin disassembly, thereby leading to inhibition of the vesicle fusion frequency. Third, we provide evidence that DEX reduces F-actin disassembly via inhibiting phosphorylation and translocation of myristoylated alanine-rich C kinase substrate and its upstream kinase protein kinase Cε. Altogether, we suggest that glucocorticoids inhibit ADP of catecholamine release by decreasing myristoylated alanine-rich C kinase substrate phosphorylation, which inhibits F-actin disassembly and vesicle translocation.


1990 ◽  
Vol 110 (3) ◽  
pp. 731-742 ◽  
Author(s):  
C M Ely ◽  
K M Oddie ◽  
J S Litz ◽  
A J Rossomando ◽  
S B Kanner ◽  
...  

The localization of the protein tyrosine kinase pp60c-src to the plasma membrane and to the membrane of secretory vesicles in neurally derived bovine chromaffin cells has suggested that tyrosine phosphorylations may be associated with the process of secretion. In the present study we have identified two cytosolic proteins of approximately 42 and 45 kD that become phosphorylated on tyrosine in response to secretagogue treatment. Phosphorylation of these proteins reached a maximum (3 min after stimulation) before maximum catecholamine release was observed (5-10 min after stimulation). Both secretion and tyrosine phosphorylation of p42 and p45 required extracellular Ca2+. Tyrosine-phosphorylated proteins of similar Mr have previously been identified in 3T3-L1 adipocytes stimulated with insulin (MAP kinase; Ray, L. B., and T. W. Sturgill. 1987. Proc. Natl. Acad. Sci. USA. 84:1502-1506) and in avian and rodent fibroblasts stimulated with a variety of mitogenic agents (Cooper, J. A., D. F. Bowen-Pope, E. Raines, R. Ross, and T. Hunter. 1982. Cell. 31:263-273; Nakamura, K. D., R. Martinez, and M. J. Weber. 1983. Mol. Cell. Biol. 3:380-390). Comparisons of the secretion-associated 42-kD protein of chromaffin cells with the 42-kD protein of Swiss 3T3 fibroblasts and 3T3-L1 adipocytes provide evidence that these three proteins are highly related. This evidence includes comigration during one-dimensional SDS-PAGE, cochromatography using ion exchange and hydrophobic matrices, similar isoelectric points, identical cyanogen-bromide peptide maps, and cochromatography of MAP kinase activity with the tyrosine-phosphorylated form of pp42. This protein(s), which appears to be activated in a variety of cell types, may serve a common function, perhaps in signal transduction involving a cascade of kinases.


Author(s):  
Joe A. Mascorro ◽  
Robert D. Yates

Extra-adrenal chromaffin organs (abdominal paraganglia) constitute rich sources of catecholamines. It is believed that these bodies contain norepinephrine exclusively. However, the present workers recently observed epinephrine type granules in para- ganglion cells. This report investigates catecholamine containing granules in rabbit paraganglia at the ultrastructural level.New Zealand white rabbits (150-170 grams) were anesthetized with 50 mg/kg Nembutal (IP) and perfused with 3% glutaraldehyde buffered with 0.2M sodium phosphate, pH 7.3. The retroperitoneal tissue blocks were removed and placed in perfusion fluid for 4 hours. The abdominal paraganglia were dissected from the blocks, diced, washed in phosphate buffer and fixed in 1% osmic acid buffered with phosphate. In other animals, the glutaraldehyde perfused tissue blocks were immersed for 1 hour in 3% glutaraldehyde/2.5% potassium iodate buffered as before. The paraganglia were then diced, separated into two vials and washed in the buffer. A portion of this tissue received osmic acid fixation.


Author(s):  
George D. Pappas ◽  
Jacqueline Sagen

We have been interested in the use of neural transplants mainly as a local source of neuroactive substances, rather than as a replacement for damaged neural circuities. In particular, we have been exploring the possibilities of reducing pain by transplants of opioid peptide producing cells, and reducing depression by transplants of monoamine-producing cells. For the past several years, work in our laboratory has demonstrated in both acute and chronic pain models that transplantation of adrenal medullary tissue or isolated chromaffin cells into CNS pain modulatory regions can reduce pain sensitivity in rodents. Chromaffin cells were chosen as donor source since they produce high levels of both opioid peptides and catecholamines, substances which independently, and probably synergistically, reduce pain sensitivity when injected locally into the spinal cord. The analgesia produced by these transplants most likely results from the release of both opioid peptides and catecholamines, since it can be blocked or attenuated by opiate or adrenergic antagonists, respectively. Furthermore, CSF levels of met-enkephalin and catecholamines are increased by the transplants.


Author(s):  
Gemma A.J. Kuijpers ◽  
Harvey B. Pollard

Exocytotic fusion of granules in the adrenal medulla chromaffin cell is triggered by a rise in the concentration of cytosolic Ca2+ upon cell activation. The protein synexin, annexin VII, was originally found in the adrenal medulla and has been shown to cause aggregation and to support fusion of chromaffin granules in a Ca2+-dependent manner. We have previously suggested that synexin may there fore play a role in the exocytotic fusion process. In order to obtain more structural information on synexin, we performed immuno-electron microscopy on frozen ultrathin sections of both isolated chromaffin granules and chromaffin cells.Chromaffin granules were isolated from bovine adrenal medulla, and synexin was isolated from bovine lung. Granules were incubated in the presence or absence of synexin (24 μg per mg granule protein) and Ca2+ (1 mM), which induces maximal granule aggregation, in 0.3M sucrose-40m MMES buffer(pH 6.0). Granules were pelleted, washed twice in buffer without synexin and fixed with 2% glutaraldehyde- 2% para formaldehyde in 0.1 M phosphate buffer (GA/PFA) for 30 min. Chromaffin cells were isolated and cultured for 3-5 days, and washed and incubated in Krebs solution with or without 20 uM nicotine. Cells were fixed 90 sec after on set of stimulation with GA/PFA for 30 min. Fixed granule or cell pellets were washed, infiltrated with 2.3 M sucrose in PBS, mounted and frozen in liquid N2.


Author(s):  
H.B. Pollard ◽  
C.E. Creutz ◽  
C.J. Pazoles ◽  
J.H. Scott

Exocytosis is a general concept describing secretion of enzymes, hormones and transmitters that are otherwise sequestered in intracellular granules. Chemical evidence for this concept was first gathered from studies on chromaffin cells in perfused adrenal glands, in which it was found that granule contents, including both large protein and small molecules such as adrenaline and ATP, were released together while the granule membrane was retained in the cell. A number of exhaustive reviews of this early work have been published and are summarized in Reference 1. The critical experiments demonstrating the importance of extracellular calcium for exocytosis per se were also first performed in this system (2,3), further indicating the substantial service given by chromaffin cells to those interested in secretory phenomena over the years.


Sign in / Sign up

Export Citation Format

Share Document