Nonlinear Bending of Elastic Shells

Author(s):  
J. N. Reddy
Author(s):  
Edvin Hanken ◽  
Evelyn R. Hollingsworth ◽  
Lars S. Fagerland

For fast track pipeline projects the need for costly installation vessels and sophisticated materials for rigid pipeline water injection systems, have made flexible pipelines a competitive alternative. They can be installed with less costly construction vessels, provide a competitive lead time and a corrosion resistant compliant material. Flexible pipelines have relative high axial stiffness and low non-linear bending stiffness which is a challenge to model correctly with FE for in-place analyses of pipelines. Whilst some FE programs can model the non-linear bending behaviour of a flexible pipeline at a given pressure, current FE tools do not include the effect of increased bending resistance as the system is pressurized. Therefore, a 3D FE model in ANSYS was developed to simulate the decoupled axial and nonlinear bending behaviour of a flexible, including the bend stiffening effect for increasing pressure. A description of the model is given in this paper. It will be demonstrated how the FE model can be used to simulate the 3D nonlinear catenary behaviour of an high pressure flexible pipeline tied into a manifold during pressurization. Due to high manifold hub loads during pressurization it is essential that such a model is capable of capturing all effects during pressurization to achieve an acceptable confidence level of the system integrity. It is also described how the FE model is used for upheaval buckling design, capturing non-linearities and load history effects that can reduce the conservatism in the design.


1996 ◽  
Author(s):  
Guillermo C. Gaunaurd ◽  
Donald Brill ◽  
H. Huang ◽  
Patrick W. Moore ◽  
Hans C. Strifors

2016 ◽  
Vol 59 (1) ◽  
pp. 1-7 ◽  
Author(s):  
M. S. Ganeeva ◽  
V. E. Moiseeva ◽  
Z. V. Skvortsova

1956 ◽  
Vol 23 (1) ◽  
pp. 7-10
Author(s):  
H. D. Conway

Abstract Two examples of the nonlinear bending of thin circular rods are discussed using the Bernoulli-Euler equation, which states that the change of curvature of a rod is proportional to the bending moment producing it. Numerical results are presented.


2000 ◽  
Author(s):  
Veniamin D. Kubenko ◽  
Piotr S. Kovalchuk

Abstract A method is suggested for the calculation of nonlinear free and forced vibrations of thin elastic shells of revolution, which are modeled as dynamic systems of multiple degrees of freedom. Cases are investigated in which the shells are characterized by two or more closely-spaced eigenfrequencies. Based on an analysis of averaged equations, obtained by making use of asymptotic methods of nonlinear mechanics, a number of new first integrals is obtained, which state a regular energy exchange among various modes of cylindrical shells under conditions of nonlinear resonance. Amplitude-frequency characteristics of multiple-mode vibrations are obtained for shells subjected to radial oscillating pressure.


Sign in / Sign up

Export Citation Format

Share Document