Quantum optomechanics

Author(s):  
F. Marquardt

The Les Houches Summer School 2015 covered the emerging fields of cavity optomechanics and quantum nanomechanics. Optomechanics is flourishing and its concepts and techniques are now applied to a wide range of topics. Modern quantum optomechanics was born in the late 70s in the framework of gravitational wave interferometry, initially focusing on the quantum limits of displacement measurements. Carlton Caves, Vladimir Braginsky, and others realized that the sensitivity of the anticipated large-scale gravitational-wave interferometers (GWI) was fundamentally limited by the quantum fluctuations of the measurement laser beam. After tremendous experimental progress, the sensitivity of the upcoming next generation of GWI will effectively be limited by quantum noise. In this way, quantum-optomechanical effects will directly affect the operation of what is arguably the world’s most impressive precision experiment. However, optomechanics has also gained a life of its own with a focus on the quantum aspects of moving mirrors. Laser light can be used to cool mechanical resonators well below the temperature of their environment. After proof-of-principle demonstrations of this cooling in 2006, a number of systems were used as the field gradually merged with its condensed matter cousin (nanomechanical systems) to try to reach the mechanical quantum ground state, eventually demonstrated in 2010 by pure cryogenic techniques and a year later by a combination of cryogenic and radiation-pressure cooling. The book covers all aspects—historical, theoretical, experimental—of the field, with its applications to quantum measurement, foundations of quantum mechanics and quantum information. Essential reading for any researcher in the field.


Nanophotonics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 491-511 ◽  
Author(s):  
Mikhail Tokman ◽  
Maria Erukhimova ◽  
Yongrui Wang ◽  
Qianfan Chen ◽  
Alexey Belyanin

AbstractWe develop the analytic theory describing the formation and evolution of entangled quantum states for a fermionic quantum emitter coupled simultaneously to a quantized electromagnetic field in a nanocavity and quantized phonon or mechanical vibrational modes. The theory is applicable to a broad range of cavity quantum optomechanics problems and emerging research on plasmonic nanocavities coupled to single molecules and other quantum emitters. The optimal conditions for a tripartite entanglement are realized near the parametric resonances in a coupled system. The model includes dissipation and decoherence effects due to coupling of the fermion, photon, and phonon subsystems to their dissipative reservoirs within the stochastic evolution approach, which is derived from the Heisenberg–Langevin formalism. Our theory provides analytic expressions for the time evolution of the quantum state and observables and the emission spectra. The limit of a classical acoustic pumping and the interplay between parametric and standard one-photon resonances are analyzed.


2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Matteo Brunelli ◽  
Daniel Malz ◽  
Albert Schliesser ◽  
Andreas Nunnenkamp

2018 ◽  
Vol 98 (6) ◽  
Author(s):  
M. J. Akram ◽  
E. B. Aranas ◽  
N. P. Bullier ◽  
J. E. Lang ◽  
T. S. Monteiro

Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 125 ◽  
Author(s):  
Farid Shahandeh ◽  
Martin Ringbauer

Quantum optomechanics uses optical means to generate and manipulate quantum states of motion of mechanical resonators. This provides an intriguing platform for the study of fundamental physics and the development of novel quantum devices. Yet, the challenge of reconstructing and verifying the quantum state of mechanical systems has remained a major roadblock in the field. Here, we present a novel approach that allows for tomographic reconstruction of the quantum state of a mechanical system without the need for extremely high quality optical cavities. We show that, without relying on the usual state transfer presumption between light an mechanics, the full optomechanical Hamiltonian can be exploited to imprint mechanical tomograms on a strong optical coherent pulse, which can then be read out using well-established techniques. Furthermore, with only a small number of measurements, our method can be used to witness nonclassical features of mechanical systems without requiring full tomography. By relaxing the experimental requirements, our technique thus opens a feasible route towards verifying the quantum state of mechanical resonators and their nonclassical behaviour in a wide range of optomechanical systems.


2020 ◽  
Vol 53 (7) ◽  
pp. 075401
Author(s):  
Marta Marchese ◽  
Hannah McAleese ◽  
Angelo Bassi ◽  
Mauro Paternostro

2013 ◽  
Vol 88 (4) ◽  
Author(s):  
Keye Zhang ◽  
Pierre Meystre ◽  
Weiping Zhang

Sign in / Sign up

Export Citation Format

Share Document