scholarly journals Optomechanical state reconstruction and nonclassicality verification beyond the resolved-sideband regime

Quantum ◽  
2019 ◽  
Vol 3 ◽  
pp. 125 ◽  
Author(s):  
Farid Shahandeh ◽  
Martin Ringbauer

Quantum optomechanics uses optical means to generate and manipulate quantum states of motion of mechanical resonators. This provides an intriguing platform for the study of fundamental physics and the development of novel quantum devices. Yet, the challenge of reconstructing and verifying the quantum state of mechanical systems has remained a major roadblock in the field. Here, we present a novel approach that allows for tomographic reconstruction of the quantum state of a mechanical system without the need for extremely high quality optical cavities. We show that, without relying on the usual state transfer presumption between light an mechanics, the full optomechanical Hamiltonian can be exploited to imprint mechanical tomograms on a strong optical coherent pulse, which can then be read out using well-established techniques. Furthermore, with only a small number of measurements, our method can be used to witness nonclassical features of mechanical systems without requiring full tomography. By relaxing the experimental requirements, our technique thus opens a feasible route towards verifying the quantum state of mechanical resonators and their nonclassical behaviour in a wide range of optomechanical systems.

2012 ◽  
Vol 10 (02) ◽  
pp. 1250002
Author(s):  
MING-XIA HUO ◽  
YING LI ◽  
ZHI SONG ◽  
CHANG-PU SUN

We propose the simulation for an effective scheme to realize a spin network with tunable long-range couplings in the coupled cavity array with external multi-driving lasers. Via this scheme, the linear photon-like dispersion relation is achievable, which could be employed to perform a perfect quantum state transfer. Numerical results show that when applying two lasers in each cavity, the fidelity is higher than the highest fidelity of a classical transfer even for the transfer distance l increases up to 100 sites. In the simulation, as the number of lasers increases, the fidelity will be evidently enhanced for a wide range of l.


Author(s):  
S. Felicetti ◽  
S Fedortchenko ◽  
S. Ducci ◽  
I. Favero ◽  
T. Coudreau ◽  
...  

The Les Houches Summer School 2015 covered the emerging fields of cavity optomechanics and quantum nanomechanics. Optomechanics is flourishing and its concepts and techniques are now applied to a wide range of topics. Modern quantum optomechanics was born in the late 70s in the framework of gravitational wave interferometry, initially focusing on the quantum limits of displacement measurements. Carlton Caves, Vladimir Braginsky, and others realized that the sensitivity of the anticipated large-scale gravitational-wave interferometers (GWI) was fundamentally limited by the quantum fluctuations of the measurement laser beam. After tremendous experimental progress, the sensitivity of the upcoming next generation of GWI will effectively be limited by quantum noise. In this way, quantum-optomechanical effects will directly affect the operation of what is arguably the world’s most impressive precision experiment. However, optomechanics has also gained a life of its own with a focus on the quantum aspects of moving mirrors. Laser light can be used to cool mechanical resonators well below the temperature of their environment. After proof-of-principle demonstrations of this cooling in 2006, a number of systems were used as the field gradually merged with its condensed matter cousin (nanomechanical systems) to try to reach the mechanical quantum ground state, eventually demonstrated in 2010 by pure cryogenic techniques and a year later by a combination of cryogenic and radiation-pressure cooling. The book covers all aspects—historical, theoretical, experimental—of the field, with its applications to quantum measurement, foundations of quantum mechanics and quantum information. Essential reading for any researcher in the field.


2021 ◽  
Vol 5 (EICS) ◽  
pp. 1-23
Author(s):  
Markku Laine ◽  
Yu Zhang ◽  
Simo Santala ◽  
Jussi P. P. Jokinen ◽  
Antti Oulasvirta

Over the past decade, responsive web design (RWD) has become the de facto standard for adapting web pages to a wide range of devices used for browsing. While RWD has improved the usability of web pages, it is not without drawbacks and limitations: designers and developers must manually design the web layouts for multiple screen sizes and implement associated adaptation rules, and its "one responsive design fits all" approach lacks support for personalization. This paper presents a novel approach for automated generation of responsive and personalized web layouts. Given an existing web page design and preferences related to design objectives, our integer programming -based optimizer generates a consistent set of web designs. Where relevant data is available, these can be further automatically personalized for the user and browsing device. The paper includes presentation of techniques for runtime adaptation of the designs generated into a fully responsive grid layout for web browsing. Results from our ratings-based online studies with end users (N = 86) and designers (N = 64) show that the proposed approach can automatically create high-quality responsive web layouts for a variety of real-world websites.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


2007 ◽  
Vol 75 (5) ◽  
Author(s):  
O. Romero-Isart ◽  
K. Eckert ◽  
A. Sanpera

Sign in / Sign up

Export Citation Format

Share Document