radiation pressure force
Recently Published Documents


TOTAL DOCUMENTS

52
(FIVE YEARS 8)

H-INDEX

11
(FIVE YEARS 1)

Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 198
Author(s):  
Feng Zhang ◽  
Shengping Gong ◽  
Hexi Baoyin

Actively controlling the attitude of the solar sail is necessary to adjust the solar radiation pressure force for trajectory transfer and orbit control. The special configuration of the solar sail makes it very important to develop a unique attitude control strategy that differs from traditional methods. An attitude control method, based on shape variation of booms, is proposed in this manuscript. Firstly, we derive the equations to calculate the solar radiation pressure force and torque of the deformed solar sail. Then, the factors affecting forces and torques are analyzed. Finally, PD control law is applied to realize the three-axis attitude control for the solar sail.


2021 ◽  
Author(s):  
Man-To Hui ◽  
Davide Farnocchia ◽  
Marco Micheli

<p>We report an identification of long-period comet C/2010 U3 (Boattini) active at a new record inbound heliocentric distance of <em>r</em><sub>H</sub> ≈ 26 au. Two outburst events around 2009 and 2017 were observed. The dust morphology of the coma and tail cannot be explained unless the Lorentz force, solar gravitation, and solar radiation pressure force are all taken into account. Optically dominant dust grains have radii of ~10 μm and are ejected protractedly at speeds ≤50 m s<sup>−1</sup> near the subsolar point. The prolonged activity indicates that sublimation of supervolatiles (e.g., CO, CO<sub>2</sub>) is at play. Similar to other long-period comets, the colour of the cometary dust is redder than the solar colours. We also observed potential colour variations when the comet was at 10 < <em>r</em><sub>H</sub> < 15 au, concurrent with the onset of crystallisation of amorphous water ice, if any. Using publicly available and our refined astrometric measurements, we estimated the precise trajectory of the comet, propagated it backward to its previous perihelion, and found that the comet visited the planetary region ~2 Myr ago at perihelion distance <em>q</em> ≈ 8 au. Thus, C/2010 U3 (Boattini) is almost certainly a dynamically old comet from the Oort cloud, and the observed activity cannot be caused by retained heat from the previous apparition. The detailed study is presented in Hui et al. (2019, AJ, 157, 162).</p>


The Analyst ◽  
2021 ◽  
Author(s):  
Qin. Lu ◽  
Daniel. E. Barlow ◽  
Dhanya Haridas

Cell size, refractive index, complexity and surface roughness affect the magnitude of radiation pressure force Fpr. The velocity of a cell traveling through the focal region of a laser beam is inversely proportional to the magnitude of Fpr.


Soft Matter ◽  
2021 ◽  
Vol 17 (14) ◽  
pp. 3923-3928
Author(s):  
Janine Emile ◽  
Olivier Emile ◽  
Pierre Gaudriault

The breathing mode vibration of a thermoplastic polymer film under optical radiation pressure force resonant excitation leads to a mean thinning of the film, measured by an optical interference technique.


2020 ◽  
Vol 500 (1) ◽  
pp. 506-519
Author(s):  
Dejan Vinković ◽  
Miljenko Čemeljić

ABSTRACT We explore dust flow in the hottest parts of protoplanetary discs using the forces of gravity, gas drag, and radiation pressure. Our main focus is on the optically thin regions of dusty disc, where the dust is exposed to the most extreme heating conditions and dynamical perturbations: the surface of optically thick disc and the inner dust sublimation zone. We utilize results from two numerically strenuous fields of research. The first is the quasi-stationary solutions on gas velocity and density distributions from mangetohydrodynamical (MHD) simulations of accretion discs. This is critical for implementing a more realistic gas drag impact on dust movements. The second is the optical depth structure from a high-resolution dust radiation transfer. This step is critical for a better understanding of dust distribution within the disc. We describe a numerical method that incorporates these solutions into the dust dynamics equations. We use this to integrate dust trajectories under different disc wind models and show how grains end up trapped in flows that range from simple accretion on to the star to outflows into outer disc regions. We demonstrate how the radiation pressure force plays one of the key roles in this process and cannot be ignored. It erodes the dusty disc surface, reduces its height, resists dust accretion on to the star, and helps the disc wind in pushing grains outwards. The changes in grain size and porosity significantly affect the results, with smaller and porous grains being influenced more strongly by the disc wind and radiation pressure.


Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2915-2925
Author(s):  
Jianfan Yang ◽  
Tian Qin ◽  
Fangxing Zhang ◽  
Xianfeng Chen ◽  
Xiaoshun Jiang ◽  
...  

AbstractLight, sound, and microwave are important tools for many interdisciplinary applications in a multi-physical environment, and they usually are inefficient to be detected simultaneously in the same physical platform. However, at the microscopic scale, these waves can unexpectedly interact with the same microstructure through resonant enhancement, making it a unique hybrid micro-system for new applications across multiple physical channels. Here we experimentally demonstrate an optomechanical microdevice based on Brillouin lasing operation in an optical microcavity as a sensitive unit to sense external light, sound, and microwave signals in the same platform. These waves can induce modulations to the microcavity Brillouin laser (MBL) in a resonance-enhanced manner through either the pressure forces including radiation pressure force or thermal absorption, allowing several novel applications such as broadband non-photovoltaic detection of light, sound-light wave mixing, and deep-subwavelength microwave imaging. These results pave the way towards on-chip integrable optomechanical solutions for sensing, free-space secure communication, and microwave imaging.


2019 ◽  
Vol 626 ◽  
pp. A107 ◽  
Author(s):  
Johann Stamm ◽  
Andrzej Czechowski ◽  
Ingrid Mann ◽  
Carsten Baumann ◽  
Margaretha Myrvang

Context. Vega and Fomalhaut display a thermal emission brightness that could possibly arise from hot dust near the stars, an inner extension of their planetary debris disks. An idea has been suggested that nanometer-sized dust particles are kept in the vicinity of the stars by electromagnetic forces. This resembles the trapping that model calculations show in the corotating magnetic field in the inner heliosphere within approximately 0.2 AU from the Sun. Aims. The aim of this work is to study whether the trapping of dust due to electromagnetic forces acting on charged dust near the Sun can occur around Vega and Fomalhaut and what are the conditions for trapping. Methods. We studied the dust trajectories with numerical calculations of the full equation of motion, as well as by using the guiding center approximation. We assumed a constant dust charge and a Parker-type magnetic field, which we estimated for the two stars. Results. We find no bound trajectories of charged particles around Vega or Fomalhaut as long as the radiation pressure force exceeds the gravitational force, that is, for particles smaller than 1 μm. A trapping zone could exist inside of 0.02 AU for Vega and 0.025 AU for Fomalhaut, but only for those particles with radiation pressure force smaller than gravitational force. In comparison to the Sun, the trapping conditions would occur closer to the stars because their faster rotation leads to a more closely wound-up magnetic field spiral. We also show that plasma corotation can be consistent with trapping. Our model calculations show that the charged particles are accelerated to stellar wind velocity very quickly, pass 1 AU after approximately three days, and are further ejected outward where they pass the debris disks at high velocity. We find this for particles with a surface charge-to-mass ratio larger than 10−6 elementary charges per proton mass for both negatively and positively charged dust and independent of the strength of the radiation pressure force. Based on charging assumptions, this would correspond to dust of sizes 100 nm and smaller.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Joseph A. Boales ◽  
Farrukh Mateen ◽  
Pritiraj Mohanty

2017 ◽  
Vol 32 (06n07) ◽  
pp. 1750043 ◽  
Author(s):  
Jaume Giné

Various attempts have been made to fully explain the mechanism by which a body has inertial mass. Recently, it has been proposed that this mechanism is as follows: when an object accelerates in one direction, a dynamical Rindler event horizon forms in the opposite direction, suppressing Unruh radiation on that side by a Rindler-scale Casimir effect whereas the radiation on the other side is only slightly reduced by a Hubble-scale Casimir effect. This produces a net Unruh radiation pressure force that always opposes the acceleration, just like inertia, although the masses predicted are twice those expected, see Ref. 17. In a later work, an error was corrected so that its prediction improves to within 26% of the Planck mass, see Ref. 10. In this paper, the expression of the inertial mass of a elementary particle is derived from the holographic scenario giving the exact value of the mass of a Planck particle when it is applied to a Planck particle.


Sign in / Sign up

Export Citation Format

Share Document