The Incas of the Andes

Author(s):  
Susan Elizabeth Ramirez

The Inca (also Inka) Empire, called by the Andeans themselves “Tawantinsuyu,” referred to its four parts: the Chinchaysuyu, the Antisuyu, the Collasuyu, and the Cuntisuyu. Inter-disciplinary research pictures an assemblage of ethnic groups under a dynasty of rulers, believed to have supernatural origins. This multi-cultural state, overseen by a decimally-defined administrative system, was united by kinship ties; the worship of the sun, the moon and ethnic ancestors; negotiation; reciprocity; and force. At its height, it spread from Northwestern Argentina, through Bolivia, Peru, and Ecuador, and included about half of Chile and the southern frontier of Colombia. Troubles began in the 1520s as a strange disease decimated the native population, claiming the emperor himself. Yet, the Inca’s jurisdiction continued to expand until circa 1532, the date when Francisco Pizarro and his followers and allies marched across the Andes and confronted the Andean emperor Atahualpa in the plaza of the highland ceremonial center of Cajamarca.

2020 ◽  
Vol 10 ◽  
pp. 136-145
Author(s):  
M. P. Chebotaeva ◽  

The article deals with the traditional Khakas holiday coats «tone», «Oh ton» and «idect tone.» The research was based on the Museum collections of the Russian ethnographic Museum (Saint Petersburg)and the Museum of anthropology and Ethnography. Peter the Great (Kunstkamera), Khakass national Museum of local lore and Askiz Museum of local lore. The author analyzes the canons of embroidery arrangement on women’s fur coats of the Khakas ethnic groups-Kachin, sagay, koibal, Kyzyl and Shor. Folk embroidery of the Khakas on a festive fur coat had mythological motifs and was a kind of amulet of a person. The main ornamental motifs in embroidery were associated with the Pantheon of gods among the Khakas Tengri (Tigir), Umai (Ymai), the goddess of Fire (From Ine), the God of the Middle world «Earth-Water» (Chir-su), the Sun Goddess (kun) and the moon Goddess (AI).


Author(s):  
Mariusz Ziółkowski

Although the Inca state (ca. 1200–1572 ce) was called the Empire of the Sun, the Moon was, in some respects, an equally important divinity in the official state cult. The regulatory function of the phases of the synodic cycle of the Moon in different kinds of social activities, especially those framed in calendrical systems but also military campaigns, is well documented. As far as the orientation of architectural structures is concerned, the researchers focus their attention almost entirely on the position of the Sun. However, a more accurate analysis of two well-known sites—the caves of Intimachay and Inkaraqay—may provide evidence of their function as observatories of the lunar 18.6-year cycle. Those results may confirm the hypothesis, presented some years ago, that the Incas had elaborated a rudimentary method of predicting lunar eclipses. The determination of the exact role of Venus and other planets in the Inca worldview encounters a serious limitation: in contrast to Mesoamerica, in Tahuantinsuyu and the Andes, there are no important “first-hand” sources such as the calendrical-astronomical data of the Maya or the Aztecs. Only Venus seems to have enjoyed a cult of Pan-American range. The morning appearance of Venus was apparently related to the puberty initiation rites of male adolescents, while its appearance as Evening Star seems to have been closely symbolically related to the Inca sovereign and his military activities. Putting aside the information available on Venus and its cult, there is an almost complete lack of data on the other planets. Another problem must be considered: To what extent did the Incas inherit their knowledge from their predecessors, the Chimus, or even earlier cultures?


2018 ◽  
Vol 3 (2) ◽  
pp. 207-216 ◽  
Author(s):  
David Fisher ◽  
Lionel Sims

Claims first made over half a century ago that certain prehistoric monuments utilised high-precision alignments on the horizon risings and settings of the Sun and the Moon have recently resurfaced. While archaeoastronomy early on retreated from these claims, as a way to preserve the discipline in an academic boundary dispute, it did so without a rigorous examination of Thom’s concept of a “lunar standstill”. Gough’s uncritical resurrection of Thom’s usage of the term provides a long-overdue opportunity for the discipline to correct this slippage. Gough (2013), in keeping with Thom (1971), claims that certain standing stones and short stone rows point to distant horizon features which allow high-precision alignments on the risings and settings of the Sun and the Moon dating from about 1700 BC. To assist archaeoastronomy in breaking out of its interpretive rut and from “going round in circles” (Ruggles 2011), this paper evaluates the validity of this claim. Through computer modelling, the celestial mechanics of horizon alignments are here explored in their landscape context with a view to testing the very possibility of high-precision alignments to the lunar extremes. It is found that, due to the motion of the Moon on the horizon, only low-precision alignments are feasible, which would seem to indicate that the properties of lunar standstills could not have included high-precision markers for prehistoric megalith builders.


1967 ◽  
Vol 71 (2) ◽  
pp. 215
Author(s):  
Earle R. Caley ◽  
Andre Emmerich
Keyword(s):  
The Sun ◽  

2011 ◽  
Vol 366 (1565) ◽  
pp. 697-702 ◽  
Author(s):  
M. Dacke ◽  
M. J. Byrne ◽  
E. Baird ◽  
C. H. Scholtz ◽  
E. J. Warrant

Prominent in the sky, but not visible to humans, is a pattern of polarized skylight formed around both the Sun and the Moon. Dung beetles are, at present, the only animal group known to use the much dimmer polarization pattern formed around the Moon as a compass cue for maintaining travel direction. However, the Moon is not visible every night and the intensity of the celestial polarization pattern gradually declines as the Moon wanes. Therefore, for nocturnal orientation on all moonlit nights, the absolute sensitivity of the dung beetle's polarization detector may limit the precision of this behaviour. To test this, we studied the straight-line foraging behaviour of the nocturnal ball-rolling dung beetle Scarabaeus satyrus to establish when the Moon is too dim—and the polarization pattern too weak—to provide a reliable cue for orientation. Our results show that celestial orientation is as accurate during crescent Moon as it is during full Moon. Moreover, this orientation accuracy is equal to that measured for diurnal species that orient under the 100 million times brighter polarization pattern formed around the Sun. This indicates that, in nocturnal species, the sensitivity of the optical polarization compass can be greatly increased without any loss of precision.


2009 ◽  
Vol 5 (S260) ◽  
pp. 514-521
Author(s):  
Ilias M. Fernini

AbstractThe Islamic society has great ties to astronomy. Its main religious customs (start of the Islamic month, direction of prayer, and the five daily prayers) are all related to two main celestial objects: the Sun and the Moon. First, the start of any Islamic month is related to the actual seeing of the young crescent after the new Moon. Second, the direction of prayer, i.e., praying towards Mecca, is related to the determination of the zenith point in Mecca. Third, the proper time for the five daily prayers is related to the motion of the Sun. Everyone in the society is directly concerned by these customs. This is to say that the major impetus for the growth of Islamic astronomy came from these three main religious observances which presented an assortment of problems in mathematical astronomy. To observe these three customs, a new set of astronomical observations were needed and this helped the development of the Islamic observatory. There is a claim that it was first in Islam that the astronomical observatory came into real existence. The Islamic observatory was a product of needs and values interwoven into the Islamic society and culture. It is also considered as a true representative and an integral par of the Islamic civilisation. Since astronomy interested not only men of science, but also the rulers of the Islamic empire, several observatories have flourished. The observatories of Baghdad, Cairo, Córdoba, Toledo, Maragha, Samarqand and Istanbul acquired a worldwide reputation throughout the centuries. This paper will discuss the two most important observatories (Maragha and Samarqand) in terms of their instruments and discoveries that contributed to the establishment of these scientific institutions.


1771 ◽  
Vol 61 ◽  
pp. 422-432 ◽  
Keyword(s):  
The Sun ◽  
The Moon ◽  

The day of the month is noted according to the nautical account, which therefore in all observations noted P. M. is one day forwarder than the civil account. The latitude in is deduced from the last preceding meridian altitude of the Sun; and the longitude in is corrected by the last observations of the distances of the moon from the Sun and stars.


Sign in / Sign up

Export Citation Format

Share Document