Economics of Solar Power

Author(s):  
Christine L. Crago

Energy from the sun has vast potential for powering modern society. The first decades of the 21st century saw a rapid increase in the deployment of solar power, with global solar photovoltaic (PV) capacity growing over 25-fold, from 23 GW to 627 GW, between 2009 and 2019. Growth in the solar PV market is supported by financial and regulatory incentives offered by many governments worldwide. These incentives include feed-in tariffs, rebates, and tax incentives, as well as market-support policies governing permitting and grid interconnection. Despite the rapid growth in solar PV capacity, solar electricity accounts for under 3% of global electricity generation, suggesting that there is huge potential for the solar PV market to expand and meet global energy demand. Foremost among the benefits of solar power is its potential to drastically cut greenhouse gas (GHG) emissions from the electricity sector. Solar electricity can also reduce local air pollution, and growth of the PV market can enhance energy security and contribute to the green economy. However, there are challenges to future expansion of the solar PV market. One of the key barriers is the cost of solar projects. Although as of 2020 the cost of utility-scale solar projects was beginning to be competitive with the cost of conventional energy sources, further reductions in costs are needed to achieve deeper penetration of solar electricity. Other challenges associated with solar electricity have to do with the predictable and unpredictable aspects of solar resource. On the one hand, solar resource varies predictably based on season and time of day. When solar electricity output coincides with peak electricity demand, solar electricity provides added value to the electrical grid. On the other hand, weather variation, air quality, and other factors can drastically alter predicted output from solar PV systems. The unpredictable aspect of solar electricity poses a major challenge for integrating solar electricity into the electrical grid, especially for high levels of penetration. Grid operators must either store electricity or rely on standby generators to maintain grid reliability, both of which are costly. Advances in storage technology and grid management will be needed if solar electricity is to be a major source of electricity supply. Residential adoption of rooftop solar PV systems has led to the growth of “prosumers” (households that consume and produce electricity) and has provided a novel setting to examine several aspects of consumer behavior related to adoption of new technology and energy-use behavior. Studies show that financial incentives, pro-environmental preferences, and social interactions affect adoption of solar PV technology. Prosumers are also likely to consume more electricity after they install solar PV systems. Decarbonization goals related to society’s response to climate change are expected to drive future growth in the solar PV market. In addition to technological advances, market mechanisms and policies are needed to ensure that the transition to an energy system dominated by solar and other renewables is accomplished in a way that is economically efficient and socially equitable.

2019 ◽  
Vol 11 (11) ◽  
pp. 3056 ◽  
Author(s):  
Abdullah Alamoudi ◽  
Syed Muhammad Saaduddin ◽  
Abu Bakar Munir ◽  
Firdaus Muhammad-Sukki ◽  
Siti Hawa Abu-Bakar ◽  
...  

Solar energy has demonstrated promising prospects in satisfying energy requirements, specifically through solar photovoltaic (PV) technology. Despite that, the cost of installation is deemed as the main hurdle to the widespread uptake of solar PV systems due to the use of expensive PV material in the module. At this point, we argue that a reduction in PV cost could be achieved through the usage of concentrator. A solar concentrator is a type of lens that is capable of increasing the collection of sun rays and focusing them onto a lesser PV area. The cost of the solar module could then be reduced on the assumption that the cost of introducing the solar concentrator in the solar module design is much lower than the cost of the removed PV material. Static concentrators, in particular, have great promise due to their ability to be integrated at any place of the building, usually on the building facade, windows and roof, due to their low geometrical concentration. This paper provides a historic context on the development of solar concentrators and showcases the latest technological development in static PV concentrators including non-imaging compound parabolic concentrator, V-trough, luminescent solar concentrator and quantum dot concentrator. We anticipated that the static low concentrating PV (LCPV) system could serve to enhance the penetration of PV technology in the long run to achieve the Sustainable Development Goal (SDG) 7—to open an avenue to affordable, reliable, sustainable, and modern energy for all by 2030.


Author(s):  
Liping Guo

Solar energy conversion is one of the most addressed topics in the field of renewable energy. Solar radiation is usually converted into two forms of energy: thermal and electrical energy. Solar electricity has applications in many systems such as rural electricity, water pumping, and satellite communications. A solar power system consists of solar panels, dc-dc converters, controller, and load. Charging a rechargeable battery requires a regulated dc voltage. However, the voltage supplied by a solar panel can vary significantly depending upon the day, time, weather condition, and irradiation from the sun. Since solar power is unregulated, it cannot be supplied to the load directly. Solar power is harvested and stored by charging rechargeable batteries. A dc-dc converter is connected between the solar panel and the battery to charge the battery with a regulated voltage. Therefore, solar power can be properly converted and controlled to provide required electrical power to the load, and excessive power can be sent back to the electrical grid.


2004 ◽  
Vol 43 (3) ◽  
pp. 267-294 ◽  
Author(s):  
Waqasullah Khan Shinwari ◽  
Fahd Ali ◽  
A. H. Nayyar

Solar photovoltaic systems are prohibitively expensive in terms of installation costs. Power from them is also available intermittently—only when energy from the sun is available. On the other hand, PV systems are free of the ever-rising costs of input fuel. They also incur much less operation and maintenance costs and are supposed to have a longer lifetime than, for example, a fossil fuel power plant. Thus using solar-PV power looks uneconomical in the short term, but may be profitable in the long term. It is, therefore, interesting to identify the factors that can make investment in solar PV power generation acceptable. This paper carries out a financial analysis of installing a 10 MW solar photovoltaic power generation plant for sale of electricity to a grid. It compares the levelised cost of this mode of energy generation as compared to a fossil fuel plant. It also calculates the cost of electricity generation and tariff for power from this plant. It then identifies the factors that can make the investment in a grid-scale solar PV plant more favourable than investment in other conventional and non-renewable sources.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3360
Author(s):  
Tefera Mekonnen ◽  
Ramchandra Bhandari ◽  
Venkata Ramayya

Currently, difficulties such as the depletion of fossil fuel resources and the associated environmental pollution have driven the rise of other energy systems based on green energy sources. In this research, modeling and a viability study of grid-connected and islanded photovoltaic (PV) power systems for supplying the residential load in Mekelle City, Ethiopia, were carried out considering the country’s emerging utility tariff plan for 2021 and beyond. The technical viability of the proposed supply option was analyzed using PVGIS, PVWatts and HOMER Pro tool, while the economic and environmental optimization aspects were carried out using HOMER Pro. Sensitivity analyses and output comparisons among the three renewable energy simulation tools are presented. The results showed that under the consideration of an incremental electricity tariff plan (up to 2021), the analyzed cost of energy of the grid/PV system is around 12% lower than the utility grid tariff. Moreover, we also found that by taking the continuous global solar PV cost reduction into account, the cost of energy of the modeled islanded operation of solar PV power units totally broke the grid tariff in Ethiopia after 2029 based on the tariff for 2021 and well before with the expected escalation of the grid tariff on an annual basis. The technical performance of the system realized through PVGIS and PVWatts was almost comparable to the HOMER Pro outputs. Thus, this investigation will offer a clear direction to the concerned target groups and policy developers in the evolution of PV power supply options throughout the technically viable locations in the country.


2012 ◽  
Vol 135 (2) ◽  
Author(s):  
Brandon Duquette ◽  
Todd Otanicar

One of the noted benefits of concentrating photovoltaics (PV) is the reduced cell area which results in reduction of the overall system cost. A variety of studies have looked at the cost for concentrating PV systems and made comparisons to concentrating solar thermal power plants, typically resulting in concentrating solar thermal power having lower system costs. Recently, a widespread design space was assessed for the potential efficiency improvements possible with a coupled hybrid PV/thermal solar energy system for electricity generation. The analysis showed that modest efficiency improvements could be made but no assessment of the economic impact was made. Although modest efficiency gains can be made, such a hybrid system requires more components than one of the conventional stand alone concentrating solar power plant on its own resulting in significantly different system costs. As a result, we look to compare the overall system costs of three different solar power technologies: concentrating PV, concentrating solar thermal, and the concentrating hybrid approach. Additionally, we will focus on documenting the necessary hybrid efficiencies to make a hybrid system competitive as well as the feasibility and means for achieving these efficiencies.


2013 ◽  
pp. 318-334
Author(s):  
Liping Guo

Solar energy conversion is one of the most addressed topics in the field of renewable energy. Solar radiation is usually converted into two forms of energy: thermal and electrical energy. Solar electricity has applications in many systems such as rural electricity, water pumping, and satellite communications. A solar power system consists of solar panels, dc-dc converters, controller, and load. Charging a rechargeable battery requires a regulated dc voltage. However, the voltage supplied by a solar panel can vary significantly depending upon the day, time, weather condition, and irradiation from the sun. Since solar power is unregulated, it cannot be supplied to the load directly. Solar power is harvested and stored by charging rechargeable batteries. A dc-dc converter is connected between the solar panel and the battery to charge the battery with a regulated voltage. Therefore, solar power can be properly converted and controlled to provide required electrical power to the load, and excessive power can be sent back to the electrical grid.


Author(s):  
A. Zamulko ◽  
O. Ishchenko

The use of schedules to disconnect consumers from electricity to reduce the load on the UES of Ukraine is an outdated model and may not meet the standards and requirements of the new model of the electricity market in Ukraine. The study of consumer desires and needs is a very promising area in improving the efficiency of the balancing mechanism in the electricity market and is an important factor in calculating interruption tariffs. In this paper, to minimize costs due to power outages, the consumer considers the creation of a hybrid econometric approach that combines the advantages and minimizes the disadvantages of two models: the popular consumer survey model and the econometric model. An econometric model that uses the added value created by a group of consumers for the year is a practical way to estimate the cost of planned outages. The method of consumer surveys is the most popular tool for assessing reliability in the electricity market. The paper proposes to use publicly available consumer data collected through a simple survey of consumers about their actions in case of undesirable power outages, taking into account the specifics of their work. It is worth noting that this study focuses on the interruption scenario that will lead to the highest shutdown costs, it covers only winter outages in the afternoon and eliminates the effect of the difference between time of day and season.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8491
Author(s):  
Uladzimir Bahach ◽  
Anton Brin ◽  
Yuri Vankov ◽  
Konstantin Verchak ◽  
Olga Afanaseva ◽  
...  

This paper discusses the resource, technical, and economic potential of using solar photovoltaic (PV) systems in Belarus and Tatarstan. The considered countries are characterized by poor actinometric conditions and relatively low tariffs for traditional energy resources. At the same time, Belarus is experienced with solar power due to different incentive mechanisms that have been used over the past decade. Moreover, the cost of building solar power plants in Belarus in 2013–2017 was lower than the world average. The cost of electricity production is analyzed depending on the geographical location of sites and the type of owners of solar power plants (i.e., households, businesses and industrial enterprises, electricity producers). Using the data on the cost of photovoltaic systems as presented by IRENA and considering actinometric data for Belarus and Tatarstan, a long-term forecast of PV electricity cost is made. The moments of the break-even points and payback periods are defined for Belarus and Tatarstan.


2021 ◽  
Vol 32 (4) ◽  
pp. 58-68
Author(s):  
Thabang B. M. Mosaka ◽  
Ndamulelo Mararakanye ◽  
Bernard Bekker

The South African Renewable Independent Power Producer Procurement Programme selects bid winners based on bid tariff (70% weighting) and various economic development criteria (30% weighting). Locating renewable energy (RE) projects in areas with better resources increases their cost competitiveness. As a result, most successful bids for wind and solar photovoltaic (PV) systems to date have been concentrated in the Eastern Cape and Northern Cape provinces, respectively. Studies have shown that a wider geographic distribution of wind and solar PV projects mitigates the impacts of the variability of wind and solar PV resources, eases grid congestion and generally improves the power system’s operation. This paper conducts a literature review to investigate the procurement methods used in different regions of the world to influence the placement of RE plants, the results of which then inform proposals on adjustments to the current REI4P. The study finds that, after congestion incidents due to concentration of RE plants, some regions implement location-based tariff, where high-resource areas receive the lowest tariff and vice versa. Other regions prioritise on building transmission infrastructure in high-resource areas, while others limit the size of RE installations in one area. Given the current generation and transmission constraints in South Africa, it is important to encourage geographical dispersion of RE plants and avoid RE curtailment, since this can escalate the cost of RE integration significantly.


Author(s):  
Brandon Duquette ◽  
Todd Otanicar

One of the noted benefits of concentrating photovoltaics (PV) is the reduced cell area which results in reduction of the overall system cost. A variety of studies have looked at the cost for concentrating PV systems and made comparisons to concentrating solar thermal power plants, typically resulting in concentrating solar thermal power having lower system costs. Recently a widespread design space was assessed for the potential efficiency improvements possible with a coupled hybrid PV/thermal solar energy system for electricity generation. The analysis showed that modest efficiency improvements could be made but no assessment of the economic impact was made. Although modest efficiency gains can be made such a hybrid system requires more components than one of the conventional stand alone concentrating solar power plant on its own resulting in significantly different system costs. As a result we look to compare the overall system costs of three different solar power technologies: concentrating PV, concentrating solar thermal, and the concentrating hybrid approach. Additionally we will focus on documenting the necessary hybrid efficiencies to make a hybrid system competitive as well as the feasibility and means for achieving these efficiencies.


Sign in / Sign up

Export Citation Format

Share Document