scholarly journals Multiplex Assays of Luminex for Identification of COVID-19 Antibodies in Patient Serum: Performance Evaluation and Comparison to ELISA

2020 ◽  
Vol 154 (Supplement_1) ◽  
pp. S92-S92
Author(s):  
M S Shapiro ◽  
X Wang ◽  
D R Mendu ◽  
A Firpo

Abstract Introduction/Objective Mount Sinai Hospital has received emergency use authorization (EUA) from the FDA for Coronavirus Disease 2019 (COVID-19) antibody testing using ELISA. This serological assay detects and titrates the presence of circulating antibodies to COVID-19. Other platforms have aimed to achieve the credentials of the ELISA instrument, including the multiplex assays of Luminex. The platform is known to have a greater throughput (384 wells vs. 96 wells per microplate) and faster processing speed (8 hours vs. 17 hours). Methods Luminex utilizes beads that couple to the same COVID-19 antigens (mRBD and mSpike) which were utilized for the ELISA assay. The beads are read determining the mean fluorescence intensity (MFI). In order to compare the two methods, our study included 61 patients with COVID-19 at Mount Sinai Hospital, to screen and titrate their sera using Luminex, and to correspond the MFI values with the ELISA titers. Results The Luminex assay has achieved the same level of confidence as ELISA. The 61 patients, representing 30 negatives and 31 positives, are consistently identified as such on both platforms. Our data highlights 32% of patients with a low titer (<1:160), 42% of patients with a high titer (1:160 ~ 1:320), and 26% of patients with a very high titer level (>1:320). These titers correlated well with the MFI values. Based on a cutoff of 80,000 MFI, the sensitivity and specificity of the assay is 98% and 85%, respectively, with no overlapping of MFI between positive and negative results. Conclusion Overall, the study has demonstrated that the Luminex is a strong alternative for the ELISA platform. The Luminex highlights the broad dynamic range with no overlapping between positives and negatives. Migration from ELISA to Luminex, a platform with faster and greater throughput, is therefore, highly desirable.

2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Akrahm M. Saleh Habil ◽  
Hairul Aini Hamzah ◽  
Muhammad Imad Al-Deen Mustafa ◽  
Norlelawati A. Talib ◽  
Siti Nurul Fazlin Abdul Rahman

Introduction: Rapid quantification of hepatitis C virus is helpful in determining and monitoring of the disease progression and nature of the virus replication. The aim of the present study was to establish a fast, specific and sensitive tool for HCVRNA quantification. Materials and Methods: A total of 50 serum samples, comprising of 40 HCV-positive and 10 HCV-negative, were included in our study. RNA was extracted, reverse transcribed, and then subjected to real-time PCR amplification. Real-time PCR using EvaGreen dye and primers targeting a 5’UTR was carried out. Reference samples with known viral load were treated similarly to the unknown samples and used to create the standard curves. Results: Our method showed a high level of analytical specificity and accuracy, with a low limit of detection (~2 IU/ml). It yielded repeatable results with less than 4% of intra- assay variation. The assay covered a broad dynamic range of quantification, ranging from 0.34 to 6 log IU/ml. The diagnostic sensitivity, specificity, and accuracy were all 100%, indicating neither false positive nor false negative results were obtained. Conclusion: The developed real time PCR using EvaGreen dye has demonstrated a highly analytical and diagnostic performance for HCV quantification, suggesting its potential in clinical diagnosis and management.


Author(s):  
Fanda Meng ◽  
Weisong Huo ◽  
Jie Lian ◽  
Lei Zhang ◽  
Xizeng Shi ◽  
...  

AbstractWe report a microfluidic sandwich immunoassay constructed around a dual-giant magnetoresistance (GMR) sensor array to quantify the heart failure biomarker NT-proBNP in human plasma at the clinically relevant concentration levels between 15 pg/mL and 40 ng/mL. The broad dynamic range was achieved by differential coating of two identical GMR sensors operated in tandem, and combining two standard curves. The detection limit was determined as 5 pg/mL. The assay, involving 53 plasma samples from patients with different cardiovascular diseases, was validated against the Roche Cobas e411 analyzer. The salient features of this system are its wide concentration range, low detection limit, small sample volume requirement (50 μL), and the need for a short measurement time of 15 min, making it a prospective candidate for practical use in point of care analysis.


2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Adam Jordan ◽  
Jenna Chandler ◽  
Joshua S. MacCready ◽  
Jingcheng Huang ◽  
Katherine W. Osteryoung ◽  
...  

ABSTRACT Cyanobacteria are emerging as alternative crop species for the production of fuels, chemicals, and biomass. Yet, the success of these microbes depends on the development of cost-effective technologies that permit scaled cultivation and cell harvesting. Here, we investigate the feasibility of engineering cell morphology to improve biomass recovery and decrease energetic costs associated with lysing cyanobacterial cells. Specifically, we modify the levels of Min system proteins in Synechococcus elongatus PCC 7942. The Min system has established functions in controlling cell division by regulating the assembly of FtsZ, a tubulin-like protein required for defining the bacterial division plane. We show that altering the expression of two FtsZ-regulatory proteins, MinC and Cdv3, enables control over cell morphology by disrupting FtsZ localization and cell division without preventing continued cell growth. By varying the expression of these proteins, we can tune the lengths of cyanobacterial cells across a broad dynamic range, anywhere from an ∼20% increased length (relative to the wild type) to near-millimeter lengths. Highly elongated cells exhibit increased rates of sedimentation under low centrifugal forces or by gravity-assisted settling. Furthermore, hyperelongated cells are also more susceptible to lysis through the application of mild physical stress. Collectively, these results demonstrate a novel approach toward decreasing harvesting and processing costs associated with mass cyanobacterial cultivation by altering morphology at the cellular level. IMPORTANCE We show that the cell length of a model cyanobacterial species can be programmed by rationally manipulating the expression of protein factors that suppress cell division. In some instances, we can increase the size of these cells to near-millimeter lengths with this approach. The resulting elongated cells have favorable properties with regard to cell harvesting and lysis. Furthermore, cells treated in this manner continue to grow rapidly at time scales similar to those of uninduced controls. To our knowledge, this is the first reported example of engineering the cell morphology of cyanobacteria or algae to make them more compatible with downstream processing steps that present economic barriers to their use as alternative crop species. Therefore, our results are a promising proof-of-principle for the use of morphology engineering to increase the cost-effectiveness of the mass cultivation of cyanobacteria for various sustainability initiatives.


2011 ◽  
Vol 2 (1) ◽  
Author(s):  
Scott M. Tabakman ◽  
Lana Lau ◽  
Joshua T. Robinson ◽  
Jordan Price ◽  
Sarah P. Sherlock ◽  
...  

2015 ◽  
Vol 51 (28) ◽  
pp. 6145-6148 ◽  
Author(s):  
Robert J. Meier ◽  
Johann M. B. Simbürger ◽  
Tero Soukka ◽  
Michael Schäferling

A FRET system composed of a europium chelate and carboxynaphthofluorescein enables ratiometric pH sensing with an exceptionally broad dynamic range.


1994 ◽  
Vol 80 (5) ◽  
pp. 935-938 ◽  
Author(s):  
Jeffrey S. Oppenheim

✓ The Mount Sinai Hospital was founded in 1852 under the name “The Jews' Hospital.” Neurosurgery at Mount Sinai Hospital can be traced to the work of Dr. Charles Elsberg. In 1932, the Department of Neurosurgery was created under the direction of Dr. Ira Cohen. The history of neurosurgery at the Mount Sinai Hospital is recounted.


1995 ◽  
Vol 5 (2) ◽  
pp. 123-130 ◽  
Author(s):  
Richard B. Thompson ◽  
Marcia W. Patchan

2020 ◽  
Author(s):  
michael e silverman ◽  
Holly Loudon ◽  
Laudy Burgos

Abstract Objectives: Perceptions regarding the benefits of postpartum care among mothers and clinicians often differ. Clinicians generally perceive postpartum care as preventative, whereas pregnant and postpartum women often lack knowledge about its preventative benefits. As a result many women choose not to return for scheduled postpartum care visits. Methods: To examine if clinically relevant demographic and birth related factors are informative predictors for postpartum healthcare follow-up care, we conducted a population based cohort study of all women who delivered a child in 2012 – 2015 at the New York Mount Sinai Hospital Obstetrics and Gynecology Ambulatory Practice. Data was ascertained from electronic health records.Results: Of the 4,240 unique women who delivered between 2012-2015 at the Mount Sinai Hospital OB/GYN Ambulatory Practice, 1,685 (39.7%) did not return for their postpartum care follow-up appointment. The number of prenatal visits, maternal age, and parity were significantly associated with postpartum care follow-up. Conclusion for Practice: The purpose of this study was to determine identifiable factors associated with reduced postpartum healthcare follow-up utilization. Several clinically relevant variables were associated with the reduced likelihood for attending postpartum care visits. Because pregnant women represent a medically captured population, the results of this study point to the need to increase postpartum healthcare literacy during perinatal appointments especially among younger mothers, women who have had previous deliveries, and those with fewer prenatal visits.


Sign in / Sign up

Export Citation Format

Share Document