scholarly journals A phase 1 study of single agent veliparib in Japanese subjects with advanced solid tumors

2016 ◽  
Vol 27 ◽  
pp. vi302
Author(s):  
K. Matsumoto ◽  
K. Tamura ◽  
H. Yoshida ◽  
T. Nishikawa ◽  
Y. Imai ◽  
...  
2014 ◽  
Vol 25 ◽  
pp. iv151 ◽  
Author(s):  
R. Plummer ◽  
D. Dua ◽  
N. Cresti ◽  
A. Suder ◽  
Y. Drew ◽  
...  

2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 3013-3013 ◽  
Author(s):  
Michael Friedlander ◽  
Tarek Meniawy ◽  
Ben Markman ◽  
Linda R. Mileshkin ◽  
Paul R. Harnett ◽  
...  

3013 Background: The release of tumor-associated antigens may enhance the response to immunotherapy. BGB-A317, a humanized IgG4 variant monoclonal antibody engineered to have no Fc gamma receptor binding, targets the programmed cell death-1 (PD-1) receptor. It is being developed in solid and hematologic malignancies at a dose of 200 mg IV Q3W. BGB-290, a potent inhibitor of PARP 1/2, is hypothesized to promote neoantigen release that will potentially increase the efficacy of BGB-A317. A phase 1 study identified 60mg BID as the recommended Phase 2 dose (RP2D) for BGB-290. This study consists of initial dose escalation to determine the maximum-tolerated dose (MTD), safety, PK profile, and preliminary anti-tumor activity of the combination, followed by expansion into ovarian, breast, prostate, gastric, bladder, pancreatic and small cell lung cancers. Methods: Cohorts of 6 -12 pts with advanced solid tumors were treated in each of 5 planned dose levels (DLs). In DLs 1-3, BGB-290 doses ranged between 20-60mg PO BID with BGB-A317 2mg/kg IV Q3W. In DLs 4 - 5, BGB-290 doses were 40 or 60 mg BID; A317 was given at 200 mg IV Q3W based on PK data from a single agent Phase 1 study. Results: As of 16 Jan 2017, 38 pts [median age 59 years (34-75)] were treated in DLs 1-4; enrollment to DL5 is ongoing. One DLT of persistent Gr 2 nausea was reported in DL 4. The most common adverse event (AE) considered related to both study drugs was fatigue (10.5%). Immune-related AEs were Gr 3 hypophysitis (n = 1), Gr 3 or 4 autoimmune hepatitis(n = 2), and Gr 2 elevated AST/ALT (n = 1). Decreases in tumor burden have been observed in 16 pts; 7 achieved a PR (5 with ovarian and one each with uterine and pancreatic cancer) and one CR was observed in ovarian cancer. Six pts had SD for > 6 months including 2 pts with pancreatic cancer who received BGB-A317+BGB-290 for 189 and 281 days. Plasma/serum exposure of BGB-290 and BGB-A317 were consistent with those in single-agent trials. Conclusions: BGB290 and BGB-A317 can be combined. Dose expansion in multiple tumor types is planned to commence in 2017 once the RP2D is determined. Clinical trial information: NCT02660034.


2018 ◽  
Vol 36 (5_suppl) ◽  
pp. 48-48 ◽  
Author(s):  
Michael Friedlander ◽  
Tarek Meniawy ◽  
Ben Markman ◽  
Linda R. Mileshkin ◽  
Paul Harnett ◽  
...  

48 Background: The release of tumor-associated antigens may enhance the response to immunotherapy. BGB-A317, a humanized IgG4 variant monoclonal antibody engineered to have no Fc gamma receptor binding, targets the programmed cell death-1 (PD-1) receptor. It is being developed in solid and hematologic malignancies at a dose of 200 mg IV Q3W. BGB-290, a potent inhibitor of PARP 1/2, is hypothesized to promote neoantigen release that may potentially increase the efficacy of BGB-A317. A phase 1 study identified 60 mg BID as the recommended Phase 2 dose (RP2D) for BGB-290. This study consists of initial dose escalation to determine the maximum-tolerated dose (MTD), safety, pharmacokinetic (PK) profile, and preliminary antitumor activity of the combination, followed by expansion into ovarian, breast, prostate, gastric, bladder, pancreatic and small cell lung cancers. Methods: Cohorts of 6–12 patients with advanced solid tumors were treated in each of 5 planned dose levels (DLs). In DLs 1–3, BGB-290 doses ranged between 20–60 mg PO BID with BGB-A317 2 mg/kg IV Q3W. In DLs 4–5, BGB-290 doses were 40 or 60 mg BID; A317 was given at 200 mg IV Q3W based on PK data from a single agent Phase 1 study. Results: As of 31 March 2017, 43 patients [median age 63 years (34–75)] were treated in DLs 1–5. Three patients experienced four dose-limiting toxicities: grade 2 nausea (DL4), grade 2 nausea and grade 2 vomiting (DL5), and grade 4 autoimmune hepatitis (DL5). MTD was identified as BGB-A317 200 mg IV Q3W + BGB-290 40 mg PO BID. The most common adverse event (AE) considered related to both study drugs was fatigue. Immune-related AEs of Grade ≥3 were elevated alanine aminotransferase/aspartate aminotransferase (n = 3), autoimmune hepatitis (n = 3), and hepatitis (n = 1). Complete or partial response was observed in 11 patients, 4 of whom had confirmed PR or CR. Plasma/serum exposure of BGB-290 and BGB-A317 were consistent with those in single-agent trials. Conclusions: The combination of BGB-A317 and BGB-290 was generally well tolerated in patients with advanced solid tumors. These results support the continuation of this trial with enrollment into the disease-specific cohorts. Clinical trial information: NCT02660034.


2018 ◽  
Author(s):  
Chia-Chi Lin ◽  
Jih-Hsiang Lee ◽  
Chih-Hung Hsu ◽  
Wei-Wu Chen ◽  
Yu-Hsin Yen ◽  
...  

2014 ◽  
Vol 32 (15_suppl) ◽  
pp. e19531-e19531 ◽  
Author(s):  
Ruth Plummer ◽  
Divyanshu Dua ◽  
Nicola Cresti ◽  
Aneta Suder ◽  
Yvette Drew ◽  
...  

2021 ◽  
Author(s):  
Yoichi Naito ◽  
Yasutoshi Kuboki ◽  
Masafumi Ikeda ◽  
Kenichi Harano ◽  
Nobuaki Matsubara ◽  
...  

Abstract Background: Talazoparib is a poly(ADP-ribose) polymerase enzyme inhibitor. This open-label, non-randomized, phase 1 study of talazoparib investigated the safety, pharmacokinetics, and preliminary antitumor activity in Japanese patients with locally advanced or metastatic solid tumors, regardless of mutations in DNA damage repair-related genes, who are resistant to/ineligible for standard therapies.Methods: Patients received talazoparib dosed orally at 0.75 or 1 mg once daily using a modified 3+3 dose-escalation scheme. Primary endpoint was dose-limiting toxicities during the first cycle of talazoparib.Results: Nine patients (median age 62.0 years) were included: 3 and 6 patients at the 0.75 and 1.0 mg once-daily dose level, respectively. No dose-limiting toxicities were reported. The most commonly reported treatment-emergent adverse events (≥2 patients) were anemia, stomatitis, maculopapular rash, platelet count decreased, neutrophil count decreased, and alanine aminotransferase increased. Three patients had grade ≥3 treatment-emergent adverse events (anemia, brain metastases [1 patient each], and neutrophil and white blood cell count decreased [same patient]). Two patients temporarily discontinued treatment due to a treatment-emergent adverse event, and 1 patient required a dose reduction for neutrophil count decreased (all at 1 mg once daily). Talazoparib exposure (Cmax and AUC) after single and multiple dosing was slightly higher proportionally with talazoparib 1 mg than talazoparib 0.75 mg. The overall disease control rate was 44.4%, including 2 patients with stable disease. The recommended phase 2 dose of talazoparib was established as 1 mg once daily.Conclusions: Single-agent talazoparib was well tolerated and had preliminary antitumor activity in Japanese patients with advanced solid tumors. Clinical Trial Register: clinicalTrials.govClinical Registration Number: NCT03343054 (November 17, 2017)


Author(s):  
Yoichi Naito ◽  
Yasutoshi Kuboki ◽  
Masafumi Ikeda ◽  
Kenichi Harano ◽  
Nobuaki Matsubara ◽  
...  

SummaryBackground: Talazoparib is a poly(ADP-ribose) polymerase enzyme inhibitor. This open-label, non-randomized, phase 1 study of talazoparib investigated the safety, pharmacokinetics, and preliminary antitumor activity in Japanese patients with locally advanced or metastatic solid tumors, regardless of mutations in DNA damage repair-related genes, who are resistant to/ineligible for standard therapies. Methods: Patients received talazoparib dosed orally at 0.75 or 1 mg once daily using a modified 3 + 3 dose-escalation scheme. Primary endpoint was dose-limiting toxicities during the first cycle of talazoparib. Results: Nine patients (median age 62.0 years) were included: 3 and 6 patients at the 0.75 and 1.0 mg once-daily dose levels, respectively. No dose-limiting toxicities were reported. The most commonly reported treatment-emergent adverse events (≥2 patients) were anemia, stomatitis, maculopapular rash, platelet count decreased, neutrophil count decreased, and alanine aminotransferase increased. Three patients had grade ≥ 3 treatment-emergent adverse events (anemia, brain metastases [1 patient each], and neutrophil and white blood cell count decreased [same patient]). Two patients temporarily discontinued treatment due to a treatment-emergent adverse event, and 1 patient required a dose reduction for neutrophil count decreased (all at 1 mg once daily). Talazoparib exposure (Cmax and AUC) after single and multiple dosing was slightly higher proportionally with talazoparib 1 mg than talazoparib 0.75 mg. The overall disease control rate was 44.4%, including 2 patients with stable disease. The recommended phase 2 dose of talazoparib was established as 1 mg once daily. Conclusions: Single-agent talazoparib was well tolerated and had preliminary antitumor activity in Japanese patients with advanced solid tumors. ClinicalTrials.gov identifier: NCT03343054 (November 17, 2017).


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A443-A443
Author(s):  
Gregory Durm ◽  
Sophia Frentzas ◽  
Erik Rasmussen ◽  
Saltanat Najmi ◽  
Nooshin Sadraei

BackgroundCheckpoint inhibitors are a promising therapy for patients with solid tumors; however, many patients require additional therapies to maximize clinical benefit or overcome resistance.1 The type-1 cytokine interleukin-21 (IL-21) is a promising candidate for combination and has shown clinical activity in melanoma and renal cell cancer.2 IL-21 has also shown improved efficacy when combined with anti-programmed death (PD)-1 antibodies in preclinical models.3 4 AMG 256 is a mutated IL-21 cytokine fused to an anti-PD-1 antibody to combine IL-21 pathway stimulation with checkpoint inhibition—a strategy that is designed to prime and extend the activity of cytotoxic and memory T cells and induce anti-tumor immunity. This first-in-human (FIH) study will assess safety, tolerability, and estimated dosing of AMG 256 monotherapy in patients with advanced solid tumors.MethodsThis is a FIH, multicenter, non-randomized, open-label, phase 1 study (NCT04362748) of AMG 256 in patients with advanced solid tumors. The planned sample size is approximately 100 patients in two parts: part 1 will evaluate safety, tolerability, pharmacokinetics (PK), pharmacodynamics, and determine the maximum tolerated dose (MTD), part 2 will evaluate the MTD determined in part 1 to further characterize the safety profile and preliminary tumor response. AMG 256 will be delivered by intravenous (IV) infusion. Enrollment criteria include adults with life expectancy of > 3 months, ECOG performance status ≤ 2, histologically or cytologically confirmed metastatic or locally advanced solid tumors not amenable to curative treatment with surgery or radiation, and at least one measurable lesion ≥ 10 mm that has not undergone biopsy within 3 months of screening scan. Exclusion criteria include primary brain tumor, untreated or symptomatic brain metastases, currently receiving treatment in another investigational device or drug study, or less than 28 days since ending treatment on another investigational device or drug study, history of solid organ transplantation or major surgery within 28 days of study day 1, live vaccine therapy within 4 weeks prior to study day 1, and active infection requiring oral or IV therapy. The primary endpoints are incidence of dose-limiting toxicities and adverse events, MTD, and recommended phase 2 dose. Secondary objectives will evaluate PK parameters, preliminary antitumor activity (objective response, duration of response, progression-free survival, disease control rate, duration of stable disease, overall survival), and immunogenicity of AMG 256 via incidence of anti-AMG 256 antibodies.ResultsN/AConclusionsN/AAcknowledgements• The authors thank the investigators, patients, and study staff who are contributing to this study.• The study was sponsored and funded by Amgen Inc. • Medical writing support was provided by Christopher Nosala (Amgen Inc.).Trial RegistrationNCT04362748Ethics ApprovalThe study was approved by all institutional ethics boards.ReferencesKluger HM, Tawbi HA, Ascierto ML, et al. Defining tumor resistance to PD-1 pathway blockade: recommendations from the first meeting of the SITC Immunotherapy Resistance Taskforce. J Immunother Cancer 2020;8:e000398.Thompson JA, Curti BD, Redman BG, et al. Phase I study of recombinant interleukin-21 in patients with metastatic melanoma and renal cell carcinoma. J Clin Oncol 2008;26:2034–2039.Lewis KE, Selby MJ, Masters G, et al. Interleukin-21 combined with PD-1 or CTLA-4 blockade enhances antitumor immunity in mouse tumor models. Oncoimmunology. 2017;7:e1377873.Shen S, Sckisel G, Sahoo A, et al. Engineered IL-21 cytokine muteins fused to anti-PD-1 antibodies can improve CD8+ T cell function and anti-tumor immunity. Front Immunol 2020;11:832.


Sign in / Sign up

Export Citation Format

Share Document