scholarly journals Genetic Variation of Stomatal Traits and Carbon Isotope Discrimination in Two Hybrid Poplar Families (Populus deltoides ‘S9-2’ × P. nigra ‘Ghoy’ and P. deltoides ‘S9-2’ × P. trichocarpa ‘V24’)

2008 ◽  
Vol 102 (3) ◽  
pp. 399-407 ◽  
Author(s):  
Sophie Y. Dillen ◽  
Nicolas Marron ◽  
Barbra Koch ◽  
Reinhart Ceulemans
1995 ◽  
Vol 25 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Lawrence B. Flanagan ◽  
Kurt H. Johnsen

Measurements of the stable carbon isotope composition of leaf tissue were made on Piceamariana (Mill.) B.S.P trees from four full-sib families grown on three different field sites at the Petawawa National Forestry Institute, Ontario, Canada. The four families chosen exhibited genetic variation for growth characteristics. Genetic variation was also observed for carbon isotopic discrimination (Δ) among the families of P. mariana. In addition, a strong correlation occurred between Δ values measured on trees in 1991 and 1992, two years that had very different precipitation and temperature conditions during the growing season, indicating that the ranking of individual trees remained almost constant between years. A strong, negative correlation was observed between average carbon isotope discrimination and average tree height for the four families on the driest, least productive site, as was expected based on leaf photosynthetic characteristics. There was no significant correlation, however, between Δ values and growth on the other two study sites, where productivity was higher.


2020 ◽  
Vol 47 (4) ◽  
pp. 355
Author(s):  
Shek M. Hossain ◽  
Josette Masle ◽  
Andrew Easton ◽  
Malcolm N. Hunter ◽  
Ian D. Godwin ◽  
...  

Drought is a major constraint to canola production around the world. There is potential for improving crop performance in dry environments by selecting for transpiration efficiency (TE). In this work we investigated TE by studying its genetic association with carbon isotope discrimination (Δ) and other traits, e.g. specific leaf weight (SLW) and leaf chlorophyll content (SPAD). Among the 106 canola genotypes – including open-pollinated, hybrid, inbred types and cytoplasmic variants – tested in the field and glasshouse there was significant genotypic variation for TE, Δ, plant total dry weight, SLW and SPAD. Strong negative correlations were observed between TE and Δ (–0.52 to –0.76). Negative correlations between Δ and SLW or SPAD (–0.43 to –0.78) and smaller but significant positive correlations between TE and SLW or SPAD (0.23 to 0.30) suggested that photosynthetic capacity was, in part, underpinning the variation in TE. A cytoplasmic contribution to genetic variation in TE or Δ in canola was also observed with Triazine tolerant types having low TE and high Δ. This study showed that Δ has great potential for selecting canola germplasm with improved TE.


2005 ◽  
Vol 167 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Romain Monclus ◽  
Erwin Dreyer ◽  
Francis M. Delmotte ◽  
Marc Villar ◽  
Didier Delay ◽  
...  

2008 ◽  
Vol 65 (5) ◽  
pp. 503-503 ◽  
Author(s):  
Ludovic Bonhomme ◽  
Cécile Barbaroux ◽  
Romain Monclus ◽  
Domenico Morabito ◽  
Alain Berthelot ◽  
...  

1997 ◽  
Vol 48 (5) ◽  
pp. 649 ◽  
Author(s):  
Graeme L. Hammer ◽  
Graham D. Farquhar ◽  
Ian J. Broad

A glasshouse study examined 49 diverse sorghum lines for variation in transpiration efficiency. Three of the 49 lines grown were Sorghum spp. native to Australia; one was the major weed Johnson grass (Sorghum halepense), and the remaining 45 lines were cultivars of Sorghum bicolor. All plants were grown under non-limiting water and nutrient conditions using a semi-automatic pot watering system designed to facilitate accurate measurement of water use. Plants were harvested 56–58 days after sowing and dry weights of plant parts were determined. Transpiration efficiency differed signficantly among cultivars. The 3 Australian native sorghums had much lower transpiration efficiency than the other 46 cultivars, which ranged from 7·7 to 6·0 g/kg. For the 46 diverse cultivars, the ratio of range in transpiration efficiency to its l.s.d. was 2·0, which was similar to that found among more adapted cultivars in a previous study. This is a significant finding as it suggests that there is likely to be little pay-off from pursuing screening of unadapted material for increased variation in transpiration efficiency. It is necessary, however, also to examine absolute levels of transpiration efficiency to determine whether increased levels have been found. The cultivar with greatest transpiration efficiency in this study (IS9710) had a value 9% greater (P < 0·05) than the accepted standard for adapted sorghum cultivars. The potential impact of such an increase in transpiration efficiency warrants continued effort to capture it. Transpiration efficiency has been related theoretically and experimentally to the degree of carbon isotope discrimination in leaf tissue in sorghum, which thus offers a relatively simple selection index. In this study, the variation in transpiration efficiency was not related simply to carbon isotope discrimination. Significant associations of transpiration efficiency with ash content and indices of photosynthetic capacity were found. However, the associations were not strong. These results suggest that a simple screening technique could not be based on any of the measures or indices analysed in this study. A better understanding of the physiological basis of the observed genetic differences in transpiration efficiency may assist in developing reliable selection indices. It was concluded that the potential value of the improvement in transpiration efficiency over the accepted standard and the degree of genetic variation found warrant further study on this subject. It was suggested that screening for genetic variation under water-limiting conditions may provide useful insights and should be pursued.


1996 ◽  
Vol 23 (2) ◽  
pp. 127 ◽  
Author(s):  
Zhenmin Lu ◽  
Jiwei Chen ◽  
RG Percy ◽  
MR Sharifi ◽  
PW Rundel ◽  
...  

Stable carbon isotope discrimination (Δ) was evaluated in primitive and cultivated Gossypium barbadense L. Significant differences among cultivated Pima lines were positively associated with the degree of selection for lint yield and heat resistance. A population mean study of a cross between B368, a primitive, uncultivated G. barbadense, and Pima S-6, an advanced line, showed that Δ is probably under genetic control, and could be a suitable selection trait in breeding programs. Eleven uncultivated accessions of primitive G. barbadense of varying origins grown in one environment showed a broad range of Δ values (18.8-20.50), pointing to substantial genetic variation of Δ in the G. barbadense germplasm. A was strongly correlated with stomatal conductance (gs) in the commercial lines, a segregating F2 population of the B368 × Pima S-6 cross, and the collection of uncultivated G. barbadense. This relationship indicates that variation in gs is the main source of variation for Δ in both uncultivated and commercial G. barbadense. The positive correlation between Δ, gs and yield in the commercial Pima lines provides further evidence for selection pressures on higher gs ensuing from selection for higher yield and heat resistance. Selection for higher Δ could increase yield in crops grown in hot, high irradiance, and well-irrigated environments.


Crop Science ◽  
2004 ◽  
Vol 44 (5) ◽  
pp. 1642-1653 ◽  
Author(s):  
C. J. Lambrides ◽  
S. C. Chapman ◽  
R. Shorter

2015 ◽  
Vol 35 (8) ◽  
pp. 850-863 ◽  
Author(s):  
Justine Guet ◽  
Francesco Fabbrini ◽  
Régis Fichot ◽  
Maurizio Sabatti ◽  
Catherine Bastien ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document