scholarly journals The influence of floral traits on specialization and modularity of plant–pollinator networks in a biodiversity hotspot in the Peruvian Andes

2016 ◽  
Vol 118 (3) ◽  
pp. 415-429 ◽  
Author(s):  
Stella Watts ◽  
Carsten F. Dormann ◽  
Ana M. Martín González ◽  
Jeff Ollerton
2021 ◽  
Vol 37 (4) ◽  
pp. 200-207
Author(s):  
Pushan Chakraborty ◽  
Poulami Adhikary Mukherjee ◽  
Supratim Laha ◽  
Salil Kumar Gupta

Abstract Understanding the pollination biology of medicinal plants and their important insect pollinators is necessary for their conservation. The present study explored the complex interactions between pollinator visitation and effect of floral traits on pollinator behaviour on seven medicinal plant species grown in an urban garden in West Bengal, an eastern Indian state. The observations revealed 30 morphospecies of insect flower visitors (Diptera, Lepidoptera and Hymenoptera) that touched floral reproductive parts on the selected plants during visitation. Additionally, it was observed that floral traits (e.g., corolla length and corolla opening diameter) were important predictors of the behaviour of insects when visiting the flowers. Plant–pollinator interactions were analysed using a bipartite network approach which explored the important links between insect and plants in the network revealing the key interactions, and species which are crucial to system maintenance. This piece of work contributes to our ability to understand and maintain a stable medicinal plant–pollinator network which will support efforts to conserve native flora and insects.


2019 ◽  
Vol 33 (5) ◽  
pp. 687-700
Author(s):  
Alejandra V. González ◽  
Catalina González-Browne ◽  
Patricia Salinas ◽  
Maureen Murúa

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Katarzyna Roguz ◽  
Laurence Hill ◽  
Sebastian Koethe ◽  
Klaus Lunau ◽  
Agata Roguz ◽  
...  

AbstractVisual floral characters play an important role in shaping plant-pollinator interactions. The genus Fritillaria L. (Liliaceae), comprising approximately 140 species, is described as displaying a remarkable variety of flower colours and sizes. Despite this variation in visual floral traits of fritillaries, little is known about the potential role of these features in shaping plant-pollinator interactions. Here, we seek to clarify the role of visual attraction in species offering a robust food reward for pollinators early in the spring, which is the case for Fritillaria. We also searched for potential tendencies in the evolution of floral traits crucial for plant-pollinator communication. The generality of species with green and purple flowers may indicate an influence of environmental factors other than pollinators. The flowers of the studied species seem to be visible but not very visually attractive to potential pollinators. The food rewards are hidden within the nodding perianth, and both traits are conserved among fritillaries. Additionally, visual floral traits are not good predictors of nectar properties. When in the flowers, pollinators are navigated by nectar guides in the form of contrasting nectary area colouration. Flower colour does not serve as a phenotypic filter against illegitimate pollinators—red and orange bird-pollinated fritillaries are visible to bees.


Author(s):  
Asma Akter ◽  
Jan Klečka

Climate change is likely to have a complex effect on the growth of plants, their phenology, plant-pollinator interactions, and reproductive success. Therefore, we tested the impact of three key factors (temperature, water, and nitrogen supply) on traits, pollination, and seed production in Sinapis alba (Brassicaceae). We grew the plants in different combinations of temperature, water, and nitrogen supplementation, measured multiple vegetative and floral traits, and assessed the response of pollinators in the field. We also evaluated the effect of growing conditions on seed set in plants exposed to pollinators and hand-pollinated plants. Our results show that water stress impaired vegetative growth, decreased flower production, reduced visitation by pollinators and seed set, while nitrogen availability played an important role in nectar production. Temperature modulated the effect of water and nitrogen availability on vegetative and floral traits and strongly affected flowering phenology and flower production. We demonstrated that changes in temperature, water, and nitrogen availability induce changes in plant vegetative and floral traits which impact flower visitation and consequently plant reproduction. Climate change, particularly increasing temperature combined with reduced precipitation, thus may impact plant-pollinator interactions with negative consequences for the reproduction of wild plants and insect-pollinated crops.


2020 ◽  
Author(s):  
Yannick Klomberg ◽  
Robert Tropek ◽  
Jan E.J. Mertens ◽  
Ishmeal N. Kobe ◽  
Jiří Hodeček ◽  
...  

AbstractThe pollination syndrome hypothesis predicts that plants pollinated by the same pollinator group bear convergent combinations of specific floral traits. Nevertheless, some studies have shown relatively low predictive power for these floral trait combinations. This discrepancy may be caused by changes in the importance of specific floral traits for shaping interactions under different environmental conditions and for different pollinator groups. To test this, we studied pollination systems and floral traits along an elevational gradient on Mount Cameroon during wet and dry seasons. Using Random Forest models, allowing the ranking of traits by significance, we demonstrated that some floral traits are more important than others in shaping interactions and that these traits predict pollinators relatively well. However, the distribution and importance of traits varies under different environmental conditions. Our results imply the need to improve our trait-based understanding of plant-pollinator interactions to better inform the debate surrounding pollination syndrome hypothesis.


2020 ◽  
Author(s):  
Asma Akter ◽  
Jan Klečka

Climate change is likely to have a complex effect on the growth of plants, their phenology, plant-pollinator interactions, and reproductive success. Therefore, we tested the impact of three key factors (temperature, water, and nitrogen supply) on traits, pollination, and seed production in Sinapis alba (Brassicaceae). We grew the plants in different combinations of temperature, water, and nitrogen supplementation, measured multiple vegetative and floral traits, and assessed the response of pollinators in the field. We also evaluated the effect of growing conditions on seed set in plants exposed to pollinators and hand-pollinated plants. Our results show that water stress impaired vegetative growth, decreased flower production, reduced visitation by pollinators and seed set, while nitrogen availability played an important role in nectar production. Temperature modulated the effect of water and nitrogen availability on vegetative and floral traits and strongly affected flowering phenology and flower production. We demonstrated that changes in temperature, water, and nitrogen availability induce changes in plant vegetative and floral traits which impact flower visitation and consequently plant reproduction. Climate change, particularly increasing temperature combined with reduced precipitation, thus may impact plant-pollinator interactions with negative consequences for reproduction of wild plants and yield of insect- pollinated crops.


2006 ◽  
Vol 66 (2a) ◽  
pp. 543-552 ◽  
Author(s):  
F. Q. Martins ◽  
M. A. Batalha

Plant species present flowers with varied morphological and functional features, which may be associated to pollination systems, including species pollinated by wind, beetles, moths, bees, small insects, birds, or bats. We calculated the frequencies of the pollination systems among woody species in five cerrado fragments in central-western Brazil and tested whether the pollination systems were indeed related to floral traits. We sampled 2,280 individuals, belonging to 121 species, ninety-nine of which were described in relation to all floral traits. Most species had diurnal anthesis, pale colors, and open flowers. The most frequent groups were those composed by the species pollinated by bees, small insects, and moths. A Principal Component Analysis of the species and floral traits showed that there was a grouping among species with some pollination systems, such as those pollinated mainly by beetles, moths, birds, and bats, for which inferences based on the floral traits are recommended in cerrado sites. For the species pollinated mainly by bees or small insects, inferences based on the floral traits are not recommended, due to the large dispersion of the species scores and overlapping between these two groups, which probably occurred due to the specificity absence in plant-pollinator relationships.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 680
Author(s):  
Jérémie Goulnik ◽  
Sylvain Plantureux ◽  
Isabelle Dajoz ◽  
Alice Michelot-Antalik

Permanent grasslands are suitable habitats for many plant and animal species, among which are pollinating insects that provide a wide range of ecosystem services. A global crisis in pollination ecosystem service has been highlighted in recent decades, partly the result of land-use intensification. At the grassland scale, however, the underlying mechanisms of land-use intensification that affect plant–pollinator interactions and pollination remain understudied. In this review, we first synthesise the literature to provide new insights into the relationships between land-use intensification and pollination by using matching community and interaction traits. We then identify knowledge gaps and summarise how land-use intensification of grassland influences floral traits that may in turn be associated with modifications to pollinator matching traits. Last, we summarise how these modifications may affect pollination function on permanent grasslands. Overall, land-use intensification may lead to a shift in flower colour, a decrease in mean nectar tube depth and a decrease in reward production and pollen quality at the community level. This, in turn, may generate a decrease in pollinator mouthparts length and body size, that may favour pollinators that require a low amount of floral reward. We found no study citing the effect of land-use intensification on volatile organic compounds emitted by flowers despite the importance of these molecules in pollinator community composition. Overall, our review highlighted major knowledge gaps about the effects of land-use intensification on plant–pollinator interactions, and suggests that land-use intensification could favour plants with generalised floral traits that adversely affect pollination.


2022 ◽  
Author(s):  
Yannick Klomberg ◽  
Robert Tropek ◽  
Jan E. J. Mertens ◽  
Ishmeal N. Kobe ◽  
Jiří Hodeček ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document