scholarly journals Interactive effects of temperature, water, and nitrogen availability on the growth, floral traits, and pollination of white mustard,

2020 ◽  
Author(s):  
Asma Akter ◽  
Jan Klečka

Climate change is likely to have a complex effect on the growth of plants, their phenology, plant-pollinator interactions, and reproductive success. Therefore, we tested the impact of three key factors (temperature, water, and nitrogen supply) on traits, pollination, and seed production in Sinapis alba (Brassicaceae). We grew the plants in different combinations of temperature, water, and nitrogen supplementation, measured multiple vegetative and floral traits, and assessed the response of pollinators in the field. We also evaluated the effect of growing conditions on seed set in plants exposed to pollinators and hand-pollinated plants. Our results show that water stress impaired vegetative growth, decreased flower production, reduced visitation by pollinators and seed set, while nitrogen availability played an important role in nectar production. Temperature modulated the effect of water and nitrogen availability on vegetative and floral traits and strongly affected flowering phenology and flower production. We demonstrated that changes in temperature, water, and nitrogen availability induce changes in plant vegetative and floral traits which impact flower visitation and consequently plant reproduction. Climate change, particularly increasing temperature combined with reduced precipitation, thus may impact plant-pollinator interactions with negative consequences for reproduction of wild plants and yield of insect- pollinated crops.

Author(s):  
Asma Akter ◽  
Jan Klečka

Climate change is likely to have a complex effect on the growth of plants, their phenology, plant-pollinator interactions, and reproductive success. Therefore, we tested the impact of three key factors (temperature, water, and nitrogen supply) on traits, pollination, and seed production in Sinapis alba (Brassicaceae). We grew the plants in different combinations of temperature, water, and nitrogen supplementation, measured multiple vegetative and floral traits, and assessed the response of pollinators in the field. We also evaluated the effect of growing conditions on seed set in plants exposed to pollinators and hand-pollinated plants. Our results show that water stress impaired vegetative growth, decreased flower production, reduced visitation by pollinators and seed set, while nitrogen availability played an important role in nectar production. Temperature modulated the effect of water and nitrogen availability on vegetative and floral traits and strongly affected flowering phenology and flower production. We demonstrated that changes in temperature, water, and nitrogen availability induce changes in plant vegetative and floral traits which impact flower visitation and consequently plant reproduction. Climate change, particularly increasing temperature combined with reduced precipitation, thus may impact plant-pollinator interactions with negative consequences for the reproduction of wild plants and insect-pollinated crops.


Insects ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 512
Author(s):  
Liam M. Crowley ◽  
Jonathan P. Sadler ◽  
Jeremy Pritchard ◽  
Scott A. L. Hayward

The impact of elevated CO2 (eCO2) on plant–pollinator interactions is poorly understood. This study provides the first systematic review of this topic and identifies important knowledge gaps. In addition, we present field data assessing the impact of eCO2 (150 ppm above ambient) on bluebell (Hyacinthoides non-scripta)–pollinator interactions within a mature, deciduous woodland system. Since 1956, only 71 primary papers have investigated eCO2 effects on flowering time, floral traits and pollination, with a mere 3 studies measuring the impact on pollination interactions. Our field experiment documented flowering phenology, flower visitation and seed production, as well as the abundance and phenology of dominant insect pollinators. We show that first and mid-point flowering occurred 6 days earlier under eCO2, but with no change in flowering duration. Syrphid flies and bumble bees were the dominant flower visitors, with peak activity recorded during mid- and late-flowering periods. Whilst no significant difference was recorded in total visitation or seed set between eCO2 and ambient treatments, there were clear patterns of earlier flowering under eCO2 accompanied by lower pollinator activity during this period. This has implications for potential loss of synchrony in pollination systems under future climate scenarios, with associated long-term impacts on abundance and diversity.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


Author(s):  
Sergei Soldatenko ◽  
Sergei Soldatenko ◽  
Genrikh Alekseev ◽  
Genrikh Alekseev ◽  
Alexander Danilov ◽  
...  

Every aspect of human operations faces a wide range of risks, some of which can cause serious consequences. By the start of 21st century, mankind has recognized a new class of risks posed by climate change. It is obvious, that the global climate is changing, and will continue to change, in ways that affect the planning and day to day operations of businesses, government agencies and other organizations and institutions. The manifestations of climate change include but not limited to rising sea levels, increasing temperature, flooding, melting polar sea ice, adverse weather events (e.g. heatwaves, drought, and storms) and a rise in related problems (e.g. health and environmental). Assessing and managing climate risks represent one of the most challenging issues of today and for the future. The purpose of the risk modeling system discussed in this paper is to provide a framework and methodology to quantify risks caused by climate change, to facilitate estimates of the impact of climate change on various spheres of human activities and to compare eventual adaptation and risk mitigation strategies. The system integrates both physical climate system and economic models together with knowledge-based subsystem, which can help support proactive risk management. System structure and its main components are considered. Special attention is paid to climate risk assessment, management and hedging in the Arctic coastal areas.


Author(s):  
Aradhana Phukan ◽  
P. K. Barua ◽  
D. Sarma ◽  
S. D. Deka

Two CMS lines, IR 58025A and IR 68888A along with their maintainers and two fertility restorers, LuitR and IR 36R, were evaluated for flower and plant characters during early ahu (February-June) and kharif (July-November) seasons. IR 58025A showed longer stigmata and styles, and higher spikelet Length/Breadth (L/B) ratio while IR 68888A showed broader stigmata and wider glume opening angle in both the seasons. IR 68888A also exhibited higher pollen sterility during early ahu. IR 36R was characterized with broad anthers. LuitR showed longer and broader anthers with more pollen than others. Plant height, flag leaf length, flag leaf width and area were higher in IR 36R. Panicle exsertion was complete in pollen parents whereas it was 78-80% in CMS lines. The widest flag leaf angle was found in IR 58025B during early Ahu and in IR 36R during kharif. Kharif season was more favourable for growth of the plants with higher seed set percentage while floral traits of the CMS lines were better expressed in early Ahu. Manipulation of the seeding sequence of the parental lines in early Ahu is warranted for better seed set provided the seed crop escapes heavy premonsoon showers during reproductive stage. IR 68888A/LuitR was a good combination for pollen dispersal and seed setting.


Sign in / Sign up

Export Citation Format

Share Document