scholarly journals Picky carnivorous plants? Investigating preferences for preys’ trophic levels – a stable isotope natural abundance approach with two terrestrial and two aquatic Lentibulariaceae tested in Central Europe

2019 ◽  
Vol 123 (7) ◽  
pp. 1167-1177 ◽  
Author(s):  
Saskia Klink ◽  
Philipp Giesemann ◽  
Gerhard Gebauer

Abstract Background and Aims Stable isotope two-source linear mixing models are frequently used to calculate the nutrient-uptake efficiency of carnivorous plants from pooled prey. This study aimed to separate prey into three trophic levels as pooled prey limits statements about the contribution of a specific trophic level to the nutrition of carnivorous plants. Phytoplankton were used as an autotrophic reference for aquatic plants as the lack of suitable reference plants impedes calculation of their efficiency. Methods Terrestrial (Pinguicula) and aquatic (Utricularia) carnivorous plants alongside autotrophic reference plants and potential prey from six sites in Germany and Austria were analysed for their stable isotope natural abundances (δ15N, δ13C). A two-source linear mixing model was applied to calculate the nutrient-uptake efficiency of carnivorous plants from pooled prey. Prey preferences were determined using a Bayesian inference isotope mixing model. Key Results Phytophagous prey represented the main contribution to the nutrition of Pinguicula (approx. 55 %), while higher trophic levels contributed a smaller amount (diverse approx. 27 %, zoophagous approx. 17 %). As well as around 48 % nitrogen, a small proportion of carbon (approx. 9 %) from prey was recovered in the tissue of plants. Aquatic Utricularia australis received 29 % and U. minor 21 % nitrogen from zooplankton when applying phytoplankton as the autotrophic reference. Conclusions The separation of prey animals into trophic levels revealed a major nutritional contribution of lower trophic level prey (phytophagous) for temperate Pinguicula species. Naturally, prey of higher trophic levels (diverse, zoophagous) are rarer, resulting in a smaller chance of being captured. Phytoplankton represents an adequate autotrophic reference for aquatic systems to estimate the contribution of zooplankton-derived nitrogen to the tissue of carnivorous plants. The autonomous firing of Utricularia bladders results in the additional capture of phytoplankton, calling for new aquatic references to determine the nutritional importance of phytoplankton for aquatic carnivorous plants.

2010 ◽  
Vol 388 (3-4) ◽  
pp. 273-279 ◽  
Author(s):  
Marta Álvarez ◽  
Lorenzo Proia ◽  
Antonio Ruggiero ◽  
Francesc Sabater ◽  
Andrea Butturini

Author(s):  
Linda Reynard

Stable isotope ratios of bone collagen have been used to determine trophic levels in diverse archaeological populations. The longest established and arguably most successful isotope system has been nitrogen, followed by carbon, and more recently hydrogen. These trophic level proxies rely on a predictable change in isotope ratio with each trophic level step; however, this requirement may not always be met, which can lead to difficulties in interpreting archaeological evidence. In agricultural communities, in particular, there are several possible complications to the interpretation of nitrogen and carbon isotopes. Recent approaches to overcome these limitations include better quantification and understanding of the influences on consumer isotope ratios; inclusion of evidence from plant remains; further investigation of apatite δ13C—collagen δ13C spacing in bones; measurement of carbon and nitrogen isotope ratios in individual amino acids, rather than collagen; and development of other stable isotope proxies for trophic level, such as hydrogen isotopes.


2010 ◽  
Vol 100 (5) ◽  
pp. 511-520 ◽  
Author(s):  
K. Oelbermann ◽  
S. Scheu

AbstractWe investigated if the commonly used aggregation of organisms into trophic guilds, such as detritivores and predators, in fact represent distinct trophic levels. Soil arthropods of a forest-meadow transect were ascribed a priori to trophic guilds (herbivores, detritivores, predators and necrovores), which are often used as an equivalent to trophic levels. We analysed natural variations in 15N/14N ratios of the animals in order to investigate the trophic similarity of organisms within (a priori defined) trophic guilds. Using trophic guilds as an equivalent to trophic level, the assumed stepwise enrichment of 15N by 3.4‰ per trophic level did not apply to detritivores; they were only enriched in 15N by on average 1.5‰ compared to litter materials. Predators on average were enriched in 15N by 3.5‰ compared to detritivores. Within detritvores and predators δ15N signatures varied markedly, indicating that these trophic guilds are dominated by generalist feeders which form a gradient of organisms feeding on different resources. The results indicate that commonly used trophic guilds, in particular detritivores and predators, do not represent trophic levels but consist of subguilds, i.e. subsets of organisms differing in resource utilization. In particular, in soil and litter food webs where trophic level omnivory is common, the use of distinct trophic levels may be inappropriate. Guilds of species delineated by natural variations of stable isotope ratios are assumed to more adequately represent the structure of litter and soil food webs allowing a more detailed understanding of their functioning.


Sign in / Sign up

Export Citation Format

Share Document