scholarly journals Bird Diversity Components in Australian Eucalyptus and North-Temperate Quercus Woodlands

The Auk ◽  
2001 ◽  
Vol 118 (2) ◽  
pp. 443-456
Author(s):  
Martin L. Cody

Abstract Diversity patterns of breeding bird assemblages (exclusive of raptors and nocturnal species) of western North American oak and Australian eucalypt woodlands are derived from data recorded at 113 census sites distributed over four regions, two on each continent. Regional species richness varies by a factor of 2 among regions. The contribution to regional species totals by various diversity components is examined: α-diversity (species richness within sites), β-diversity (species turnover between sites related to differences in vegetation structure), and γ-diversity (turnover related to distance between sites, independent of habitat change). Mean α-diversity is relatively constant among regions (mean 25.5 to 29.7 species). Variation in α-diversity within regions is related to variation in vegetation structure, and bird-density variation is best predicted by a measure of vegetation density. The relationships between bird diversity and density and vegetation structure are similar in the four regions. With the influence of vegetation structure removed, there is no (Australia) or at best a modest (North America) latitudinal gradient in α-diversity. Within regions, regression analysis shows that species turnover is significantly related to both vegetation structural differences (β-diversity) and distance between sites (γ-diversity), with the latter accounting for a larger proportion of, and correlating strongly with, regional species totals. Identification of factors promoting species turnover between sites, beyond distance and vegetation effects, remains a major challenge to ecologists.

2011 ◽  
Vol 57 (3) ◽  
pp. 207-211
Author(s):  
Yoni Gavish

In their rebuttal to my comment, Roll et al. (2011) defend their original conclusion, by questioning the theoretical framework on which I based my analysis. They stress the importance of the statistical prediction limits and the treatment of latitudinal location as a covariate. They also add an additional grid-cell-based analysis. Here, I claim that even if provincial species-area relationships (SPAR) are not parallel, they are still different. While relying on Roll et al.'s (2011) analyses, I show that for each taxon there is at least one other provincial SPAR that lies considerably above the Palaearctic SPAR, making Palaearctic countries less favorable to be identified as a global biodiversity hotspot. I further claim that prediction limits should not be used to answer the question in focus and that adding latitude as a covariate does not alter the results. Finally, I address the grid-cell analyses of Roll et al. (2011), claiming that Israel's diversity lies mainly in the species turnover between cells (i.e., β diversity) and not on the average species richness within cells (α diversity). Therefore I hold on to my former conclusion that at least for three taxa—birds, mammals, and reptiles—Israel is indeed a Palaearctic provincial hotspot.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1984
Author(s):  
Anthi Oikonomou ◽  
Konstantinos Stefanidis

Disentangling the main drivers of species richness and community composition is a central theme in ecology. Freshwater biodiversity patterns have been poorly explored; yet, it has been shown that different freshwater biota have different, often contrasting responses to environmental gradients. In this study, we investigated the relative contribution of geographical and environmental (habitat-, climate- and water quality-related) factors/gradients in shaping the α- and β-diversity patterns of macrophytes and fish in sixteen natural freshwater lakes of an unexplored Balkan biodiversity hotspot, the Southern Balkan Peninsula. We employed generalized linear modeling to identify drivers of α-diversity, and generalized dissimilarity modeling to explore commonalities and dissimilarities of among-biota β-diversity. Species richness of both biota was significantly associated with lake surface area, whereas macrophytes had an inverse response to altitude, compared to fish. Both species turnover and nestedness significantly contributed to the total β-diversity of macrophytes. In contrast, species turnover was the most significant contributor to the total fish β-diversity. We found that the compositional variation of macrophytes is primarily limited by dispersal and ultimately shaped by environmental drivers, resulting in spatially structured assemblages. Fish communities were primarily shaped by altitude, highlighting the role of species sorting. We conclude that among-biota diversity patterns are shaped by different/contrasting factors, and, thus, effective/sustainable conservation strategies should encompass multiple aquatic biota.


2004 ◽  
Vol 94 (2) ◽  
pp. 111-121 ◽  
Author(s):  
P.A.V. Borges ◽  
V.K. Brown

AbstractThe arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local–regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= α diversity) and regional species richness was estimated at the pasture level (= γ diversity) with the ‘first-order-Jackknife’ estimator. Three related issues were addressed: (i) the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii) quantification of the relative contributions of α and β diversity to regional diversity using additive partitioning; and (iii) the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing β-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.


2017 ◽  
Vol 63 (2) ◽  
pp. 8-16 ◽  
Author(s):  
Corrado Battisti ◽  
Marco Giardini ◽  
Francesca Marini ◽  
Lorena Di Rocco ◽  
Giuseppe Dodaro ◽  
...  

We reported a study on breeding birds occurring inside an 80 m-deep karst sinkhole, with the characterization of the assemblages recorded along its semi-vertical slopes from the upper edge until the bottom. The internal sides of the sinkhole have been vertically subdivided in four belts about 20 m high. The highest belt (at the upper edge of the cenote) showed the highest values in mean number of bird detections, mean and normalized species richness, and Shannon diversity index. The averaged values of number of detections and species richness significantly differ among belts. Species turnover (Cody’s β-diversity) was maximum between the highest belts. Whittaker plots showed a marked difference among assemblages shaping from broken-stick model to geometric series, and explicited a spatial progressive stress with a disruption in evenness towards the deepest belts. Bird assemblages evidenced a nested subset structure with deeper belts containing successive subsets of the species occurring in the upper belts. We hypothesize that, at least during the daytime in breeding season, the observed non-random distribution of species along the vertical stratification is likely due to (i) the progressive simplification both of the floristic composition and vegetation structure, and (ii) the paucity of sunlight as resources from the upper edge to the inner side of the cenote.


2019 ◽  
Author(s):  
Kittipong Chaisiri ◽  
A. Christina Gill ◽  
Alexandr A. Stekolnikov ◽  
Soawapak Hinjoy ◽  
John W. McGarry ◽  
...  

AbstractScrub typhus, caused by a bacterial pathogen (Orientia spp.), is a potentially life-threatening febrile illness widely distributed in the Asia-Pacific region and is emerging elsewhere. The infection is transmitted by the larval stage of trombiculid mites (“chiggers”) that often exhibit low host specificity. Here, we present an analysis of chigger ecology for 38 species sampled from 11 provinces of Thailand and microbiomes for eight widespread species. In total, >16 000 individual chiggers were collected from 1 574 small mammal specimens belonging to 18 species across four horizontally-stratified habitat types. Chigger species richness was positively associated with higher latitudes, dry seasonal conditions, and host maturity; but negatively associated with increased human land use. Human scrub typhus incidence was found to be positively correlated with chigger species richness. The bacterial microbiome of chiggers was highly diverse, with Sphingobium, Mycobacterium, Neisseriaceae and various Bacillales representing the most abundant taxa. Only Leptotrombidium deliense was found to be infected with Orientia. β-diversity, but not α-diversity, was significantly different between chigger species and geographic regions, although not between habitat types. This first field survey of the chigger microbiome provides a framework for future studies on interactions between pathogens and other symbionts in these understudied vectors.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Kittipong Chaisiri ◽  
A. Christina Gill ◽  
Alexandr A. Stekolnikov ◽  
Soawapak Hinjoy ◽  
John W. McGarry ◽  
...  

Abstract Background Scrub typhus, caused by a bacterial pathogen (Orientia spp.), is a potentially life-threatening febrile illness widely distributed in the Asia-Pacific region and is emerging elsewhere. The infection is transmitted by the larval stage of trombiculid mites (“chiggers”) that often exhibit low host specificity. Here, we present an analysis of chigger ecology for 38 species sampled from 11 provinces of Thailand and microbiomes for eight widespread species. Results In total, > 16,000 individual chiggers were collected from 1574 small mammal specimens belonging to 18 species across four horizontally-stratified habitat types. Chigger species richness was positively associated with higher latitudes, dry seasonal conditions, and host maturity; but negatively associated with increased human land use. Human scrub typhus incidence was found to be positively correlated with chigger species richness. The bacterial microbiome of chiggers was highly diverse, with Sphingobium, Mycobacterium, Neisseriaceae and various Bacillales representing the most abundant taxa. Only Leptotrombidium deliense was found to be infected with Orientia and another potential pathogen, Borrelia spp., was frequently detected in pools of this species. β-diversity, but not α-diversity, was significantly different between chigger species and geographic regions, although not between habitat types. Conclusion Our study identified several key environmental and host-derived correlates of chigger species richness across Thailand, which in turn impacted on human scrub typhus incidence. Moreover, this first extensive field survey of the chigger microbiome revealed species- and province-level variation in microbial β-diversity across the country, providing a framework for future studies on interactions between pathogens and other symbionts in these understudied vectors.


2019 ◽  
Vol 15 (5) ◽  
pp. 20190133 ◽  
Author(s):  
Alessandra R. Kortz ◽  
Anne E. Magurran

The world's ecosystems are experiencing unparalleled rates of biodiversity change, with invasive species implicated as one of the drivers that restructure local assemblages. Here we focus on the processes leading to biodiversity change in a biodiversity hotspot, the Brazilian Cerrado. The null expectation that invasion leads to increase in local species richness is supported by our investigation of the grass layer in two key habitats (campo sujo and campo úmido). Our analysis uncovered a linear relationship between total richness and invasive richness at the plot level. However, because the invasive species—even though few in number—are widespread, their contribution to local richness (α-diversity) is offset by their homogenizing influence on composition (β-diversity). We thus identify a mechanism that can help explain the paradox that species richness is not declining in many local assemblages, yet compositional change is exceeding the predictions of ecological theory. As such, our results emphasize the importance of quantifying both α-diversity and β-diversity in assessments of biodiversity change in the contemporary world.


2018 ◽  
Vol 11 ◽  
pp. 49-62 ◽  
Author(s):  
Khem Raj Bhattarai

 It is now realized that the variation in species richness is influenced by spatial and temporal scales. Pattern and scale are a central focus in ecology and biogeography. The species richness relationship depends on the scale of study and their correlated factors. The broad objective of this review is to elucidate how different scales are correlated with different explanatory variables to generate patterns of species richness. Addressing the problem of scale has both fundamental and applied importance in understanding variation in species richness along gradients. The understanding of pattern, its causes, and consequences is central to our understanding of processes such as succession, community development, and the spread and persistence of species. According to the hierarchical theory of species diversity there are mainly three categories of scales: local, landscape and regional. The local species richness or α-diversity is the diversity of individual stands. The β-diversity or species change is turnover between two elevational bands or between two plots or two sites. The regional or γ-diversity is the total richness of whole mountains or study systems and it has a combined influence from α- and β-diversity. The local species richness is affected by both local-scale processes (e.g., internal interactions) and broad-scale processes (e.g., evolutionary). Different explanatory variables according to the scales of study are necessary to explain variation at different spatial scales. Local factors (e.g., disturbance, grazing and tree cover) have been used to detect variation at a local scale. Generally, topographical factors are used to detect variation in species richness at a landscape scale; whereas climate, water-energy dynamics and historical processes are used to detect variation at a regional scale. However, it is not easy to separate strictly one scale from other because there is no clear boundary between them. The study of the whole elevation gradient from tropical to alpine zone or long latitude is a broad-scale study. The intermediate scale is a study on a local mountain, which covers the subtropical to warm temperate zones. To explain patterns of species richness, a pluralistic body of hypotheses, which incorporates historical, biological and climatic factors, is needed. This is depicted by the strong relationship between climate, biological interactions, and historical processes in influencing variation in species richness at different spatial scales.Botanica Orientalis – Journal of Plant Science (2017) 11: 49–62


Diversity ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 200 ◽  
Author(s):  
Maria Lazarina ◽  
Athanasios Charalampopoulos ◽  
Maria Psaralexi ◽  
Nikos Krigas ◽  
Danai-Eleni Michailidou ◽  
...  

Elevational gradients provide a unique opportunity to explore species responses to changing environmental conditions. Here, we focus on an elevational gradient in Crete, a climate-vulnerable Mediterranean plant biodiversity hotspot and explore the diversity patterns and underlying mechanisms of different plant life forms. We found that the significant differences in life forms’ elevational and environmental ranges are reflected in α- diversity (species richness at local scale), γ-diversity (species richness at regional scale) and β-diversity (variation in species composition). The α- and γ-diversity decreased with elevation, while β-diversity followed a hump-shaped relationship, with the peak varying between life forms. However, β-deviation (deviation from null expectations) varied significantly with elevation but was life formindependent. This suggests that species composition is shaped by the size of the available species pool which depends on life form, but also by other deterministic or stochastic processes that act in a similar way for different life forms. The strength of these processes varies with elevation, with hotter–drier conditions and increased human activities filtering species composition at lowlands and large-scale processes determining the species pool size overriding local ecological processes at higher elevations.


1997 ◽  
Vol 29 (3) ◽  
pp. 237-258 ◽  
Author(s):  
Michael Dietrich ◽  
Christoph Scheidegger

AbstractTo identify representative quantitative criteria for the creation of a future Red List of epiphytic lichens, 849 trees in 132 long-term ecological observation plots in the Swiss Central Plateau and the Pre-Alps were surveyed by standard sampling. Based on the trees, frequency data of the lichen taxa observed are described by the log series model, indicating the controlling effect of few ecological factors. Based on the plots, four classes of scarcity, each comprising 25% of the species, were established. As a contribution to the development of a national, representative survey of lichens, α-diversity (species richness, species density) and β-diversity (dissimilarity) were calculated in terms of region, vegetation formation, vegetation belt and for their combinations. Differences in lichen diversity between the Central Plateau and the Pre-Alps were caused by the bigger elevational range in the Pre-Alps, which resulted in a higher species richness. α-Diversity of forest and non-forest were similar, whereas each vegetation formation showed one third of its species restricted to it. The contributions to the total lichen diversity of crustose, foliose and fruticose as well as of generative and vegetative species was calculated. Specific features along the altitudinal gradient of vegetation belts emerged: the percentage of crustose and generative lichens declined with every altitudinal step, increased in fruticose and vegetative lichens, and was the same in foliose species.


Sign in / Sign up

Export Citation Format

Share Document