ABCModeller: an automatic data mining tool based on a consistent voting method with a user-friendly graphical interface

Author(s):  
Pengyi Zhang ◽  
Jiangpeng Wu ◽  
Honglin Zhai ◽  
Shuyan Li

Abstract In order to extract useful information from a huge amount of biological data nowadays, simple and convenient tools are urgently needed for data analysis and modeling. In this paper, an automatic data mining tool, termed as ABCModeller (Automatic Binary Classification Modeller), with a user-friendly graphical interface was developed here, which includes automated functions as data preprocessing, significant feature extraction, classification modeling, model evaluation and prediction. In order to enhance the generalization ability of the final model, a consistent voting method was built here in this tool with the utilization of three popular machine-learning algorithms, as artificial neural network, support vector machine and random forest. Besides, Fibonacci search and orthogonal experimental design methods were also employed here to automatically select significant features in the data space and optimal hyperparameters of the three algorithms to achieve the best model. The reliability of this tool has been verified through multiple benchmark data sets. In addition, with the advantage of a user-friendly graphical interface of this tool, users without any programming skills can easily obtain reliable models directly from original data, which can reduce the complexity of modeling and data mining, and contribute to the development of related research including but not limited to biology. The excitable file of this tool can be downloaded from http://lishuyan.lzu.edu.cn/ABCModeller.rar.

2020 ◽  
Vol 6 (3) ◽  
pp. 337
Author(s):  
Seno Hartono ◽  
Anggi Perwitasari ◽  
Herry Sujaini

Klasifikasi merupakan metode data mining yang berfungsi untuk mengatur dan mengkategorikan data pada kelas yang berbeda-beda. Penelitian ini bertujuan untuk membandingkan dan menentukan algoritma nonparametrik terbaik dalam pengklasifikasian citra wajah. Dalam proses pengklasifikasian, penelitian ini menggunakan algoritma klasifikasi nonparametrik yaitu k-Nearest Neighbor (kNN), Support Vector Machine (SVM), Decision Tree, dan AdaBoost Untuk mengklasifikasikan citra wajah penduduk Indonesia yang berasal dari suku Batak, Dayak, Jawa, Melayu, dan Tionghoa. Penelitian ini menggunakan Orange Data Mining Tool sebagai alat bantu untuk melakukan proses data mining. Dari hasil pengklasifikasian dengan menerapkan algoritma k-Nearest Neigbor, Support Vector Machine, Decision Tree, dan AdaBoost, SVM memberikan nilai akurasi yang lebih baik dibanding algoritma lainnya. Rata-rata nilai precision keempat algoritma tersebut berturut-turut adalah Support Vector Machine 37.5%, diikuti oleh algoritma k-Nearest Neighbor 31.55%, AdaBoost 30.25%, dan untuk Decision Tree 29.75%.


2013 ◽  
Vol 4 (4) ◽  
pp. 47-57
Author(s):  
Yahya M. Tashtoush ◽  
Derar Darwish ◽  
Motasim Albdarneh ◽  
Izzat M. Alsmadi ◽  
Khalid Alkhatib

Readability metric is considered to be one of the most important factors that may affect games business in terms of evaluating games' quality in general and usability in particular. As games may go through many evolutions and developed by many developers, code readability can significantly impact the time and resources required to build, update or maintain such games. This paper introduces a new approach to detect readability for games built in Java or C++ for desktop and mobile environments. Based on data mining techniques, an approach for predicting the type of the game is proposed based on readability and some other software metrics or attributes. Another classifier is built to predict software readability in games applications based on several collected features. These classifiers are built using machine learning algorithms (J48 decision tree, support vector machine, SVM and Naive Bayes, NB) that are available in WEKA data mining tool.


Sign in / Sign up

Export Citation Format

Share Document