Hyperbolic relational graph convolution networks plus: a simple but highly efficient QSAR-modeling method

Author(s):  
Zhenxing Wu ◽  
Dejun Jiang ◽  
Chang-Yu Hsieh ◽  
Guangyong Chen ◽  
Ben Liao ◽  
...  

Abstract Accurate predictions of druggability and bioactivities of compounds are desirable to reduce the high cost and time of drug discovery. After more than five decades of continuing developments, quantitative structure–activity relationship (QSAR) methods have been established as indispensable tools that facilitate fast, reliable and affordable assessments of physicochemical and biological properties of compounds in drug-discovery programs. Currently, there are mainly two types of QSAR methods, descriptor-based methods and graph-based methods. The former is developed based on predefined molecular descriptors, whereas the latter is developed based on simple atomic and bond information. In this study, we presented a simple but highly efficient modeling method by combining molecular graphs and molecular descriptors as the input of a modified graph neural network, called hyperbolic relational graph convolution network plus (HRGCN+). The evaluation results show that HRGCN+ achieves state-of-the-art performance on 11 drug-discovery-related datasets. We also explored the impact of the addition of traditional molecular descriptors on the predictions of graph-based methods, and found that the addition of molecular descriptors can indeed boost the predictive power of graph-based methods. The results also highlight the strong anti-noise capability of our method. In addition, our method provides a way to interpret models at both the atom and descriptor levels, which can help medicinal chemists extract hidden information from complex datasets. We also offer an HRGCN+'s online prediction service at https://quantum.tencent.com/hrgcn/.

2020 ◽  
Vol 6 (7) ◽  
pp. 1931-1938
Author(s):  
Shanshan Zheng ◽  
Chao Li ◽  
Gaoliang Wei

Two quantitative structure–activity relationship (QSAR) models to predict keaq− of diverse organic compounds were developed and the impact of molecular structural features on eaq− reactivity was investigated.


Author(s):  
Benedict Irwin ◽  
Thomas Whitehead ◽  
Scott Rowland ◽  
Samar Mahmoud ◽  
Gareth Conduit ◽  
...  

More accurate predictions of the biological properties of chemical compounds would guide the selection and design of new compounds in drug discovery and help to address the enormous cost and low success-rate of pharmaceutical R&D. However this domain presents a significant challenge for AI methods due to the sparsity of compound data and the noise inherent in results from biological experiments. In this paper, we demonstrate how data imputation using deep learning provides substantial improvements over quantitative structure-activity relationship (QSAR) machine learning models that are widely applied in drug discovery. We present the largest-to-date successful application of deep-learning imputation to datasets which are comparable in size to the corporate data repository of a pharmaceutical company (678,994 compounds by 1166 endpoints). We demonstrate this improvement for three areas of practical application linked to distinct use cases; i) target activity data compiled from a range of drug discovery projects, ii) a high value and heterogeneous dataset covering complex absorption, distribution, metabolism and elimination properties and, iii) high throughput screening data, testing the algorithm’s limits on early-stage noisy and very sparse data. Achieving median coefficients of determination, R, of 0.69, 0.36 and 0.43 respectively across these applications, the deep learning imputation method offers an unambiguous improvement over random forest QSAR methods, which achieve median R values of 0.28, 0.19 and 0.23 respectively. We also demonstrate that robust estimates of the uncertainties in the predicted values correlate strongly with the accuracies in prediction, enabling greater confidence in decision-making based on the imputed values.


Sign in / Sign up

Export Citation Format

Share Document