Persistent spectral hypergraph based machine learning (PSH-ML) for protein-ligand binding affinity prediction

Author(s):  
Xiang Liu ◽  
Huitao Feng ◽  
Jie Wu ◽  
Kelin Xia

Abstract Molecular descriptors are essential to not only quantitative structure activity/property relationship (QSAR/QSPR) models, but also machine learning based chemical and biological data analysis. In this paper, we propose persistent spectral hypergraph (PSH) based molecular descriptors or fingerprints for the first time. Our PSH-based molecular descriptors are used in the characterization of molecular structures and interactions, and further combined with machine learning models, in particular gradient boosting tree (GBT), for protein-ligand binding affinity prediction. Different from traditional molecular descriptors, which are usually based on molecular graph models, a hypergraph-based topological representation is proposed for protein–ligand interaction characterization. Moreover, a filtration process is introduced to generate a series of nested hypergraphs in different scales. For each of these hypergraphs, its eigen spectrum information can be obtained from the corresponding (Hodge) Laplacain matrix. PSH studies the persistence and variation of the eigen spectrum of the nested hypergraphs during the filtration process. Molecular descriptors or fingerprints can be generated from persistent attributes, which are statistical or combinatorial functions of PSH, and combined with machine learning models, in particular, GBT. We test our PSH-GBT model on three most commonly used datasets, including PDBbind-2007, PDBbind-2013 and PDBbind-2016. Our results, for all these databases, are better than all existing machine learning models with traditional molecular descriptors, as far as we know.

2021 ◽  
Vol 7 (19) ◽  
pp. eabc5329
Author(s):  
Zhenyu Meng ◽  
Kelin Xia

Molecular descriptors are essential to not only quantitative structure-activity relationship (QSAR) models but also machine learning–based material, chemical, and biological data analysis. Here, we propose persistent spectral–based machine learning (PerSpect ML) models for drug design. Different from all previous spectral models, a filtration process is introduced to generate a sequence of spectral models at various different scales. PerSpect attributes are defined as the function of spectral variables over the filtration value. Molecular descriptors obtained from PerSpect attributes are combined with machine learning models for protein-ligand binding affinity prediction. Our results, for the three most commonly used databases including PDBbind-2007, PDBbind-2013, and PDBbind-2016, are better than all existing models, as far as we know. The proposed PerSpect theory provides a powerful feature engineering framework. PerSpect ML models demonstrate great potential to significantly improve the performance of learning models in molecular data analysis.


2021 ◽  
Vol 28 ◽  
Author(s):  
Martina Veit-Acosta ◽  
Walter Filgueira de Azevedo Junior

Background: One of the main challenges in the early stages of drug discovery is the computational assessment of protein-ligand binding affinity. Machine learning techniques can contribute to predicting this type of interaction. We may apply these techniques following two approaches. First, using the experimental structures for which affinity data is available. Second, using protein-ligand docking simulations. Objective: In this review, we describe recently published machine learning models based on crystal structures for which binding affinity and thermodynamic data are available. Method: We used experimental structures available at the protein data bank and binding affinity and thermodynamic data accessed at BindingDB, Binding MOAD, and PDBbind. We reviewed machine learning models to predict binding created using open source programs such as SAnDReS and Taba. Results: Analysis of machine learning models trained against datasets composed of crystal structure complexes indicated the high predictive performance of these models compared with classical scoring functions. Conclusion: The rapid increase in the number of crystal structures of protein-ligand complexes created a favorable scenario for developing machine learning models to predict binding affinity. These models rely on experimental data from two sources, the structural and the affinity data. The combination of experimental data generates computational models that outperform classical scoring functions.


2019 ◽  
Author(s):  
Mohammad Rezaei ◽  
Yanjun Li ◽  
Xiaolin Li ◽  
Chenglong Li

<b>Introduction:</b> The ability to discriminate among ligands binding to the same protein target in terms of their relative binding affinity lies at the heart of structure-based drug design. Any improvement in the accuracy and reliability of binding affinity prediction methods decreases the discrepancy between experimental and computational results.<br><b>Objectives:</b> The primary objectives were to find the most relevant features affecting binding affinity prediction, least use of manual feature engineering, and improving the reliability of binding affinity prediction using efficient deep learning models by tuning the model hyperparameters.<br><b>Methods:</b> The binding site of target proteins was represented as a grid box around their bound ligand. Both binary and distance-dependent occupancies were examined for how an atom affects its neighbor voxels in this grid. A combination of different features including ANOLEA, ligand elements, and Arpeggio atom types were used to represent the input. An efficient convolutional neural network (CNN) architecture, DeepAtom, was developed, trained and tested on the PDBbind v2016 dataset. Additionally an extended benchmark dataset was compiled to train and evaluate the models.<br><b>Results: </b>The best DeepAtom model showed an improved accuracy in the binding affinity prediction on PDBbind core subset (Pearson’s R=0.83) and is better than the recent state-of-the-art models in this field. In addition when the DeepAtom model was trained on our proposed benchmark dataset, it yields higher correlation compared to the baseline which confirms the value of our model.<br><b>Conclusions:</b> The promising results for the predicted binding affinities is expected to pave the way for embedding deep learning models in virtual screening and rational drug design fields.


2020 ◽  
Vol 28 (2) ◽  
pp. 253-265 ◽  
Author(s):  
Gabriela Bitencourt-Ferreira ◽  
Amauri Duarte da Silva ◽  
Walter Filgueira de Azevedo

Background: The elucidation of the structure of cyclin-dependent kinase 2 (CDK2) made it possible to develop targeted scoring functions for virtual screening aimed to identify new inhibitors for this enzyme. CDK2 is a protein target for the development of drugs intended to modulate cellcycle progression and control. Such drugs have potential anticancer activities. Objective: Our goal here is to review recent applications of machine learning methods to predict ligand- binding affinity for protein targets. To assess the predictive performance of classical scoring functions and targeted scoring functions, we focused our analysis on CDK2 structures. Methods: We have experimental structural data for hundreds of binary complexes of CDK2 with different ligands, many of them with inhibition constant information. We investigate here computational methods to calculate the binding affinity of CDK2 through classical scoring functions and machine- learning models. Results: Analysis of the predictive performance of classical scoring functions available in docking programs such as Molegro Virtual Docker, AutoDock4, and Autodock Vina indicated that these methods failed to predict binding affinity with significant correlation with experimental data. Targeted scoring functions developed through supervised machine learning techniques showed a significant correlation with experimental data. Conclusion: Here, we described the application of supervised machine learning techniques to generate a scoring function to predict binding affinity. Machine learning models showed superior predictive performance when compared with classical scoring functions. Analysis of the computational models obtained through machine learning could capture essential structural features responsible for binding affinity against CDK2.


2020 ◽  
Author(s):  
Paul Francoeur ◽  
Tomohide Masuda ◽  
David R. Koes

One of the main challenges in drug discovery is predicting protein-ligand binding affinity. Recently, machine learning approaches have made substantial progress on this task. However, current methods of model evaluation are overly optimistic in measuring generalization to new targets, and there does not exist a standard dataset of sufficient size to compare performance between models. We present a new dataset for structure-based machine learning, the CrossDocked2020 set, with 22.5 million poses of ligands docked into multiple similar binding pockets across the Protein Data Bank and perform a comprehensive evaluation of grid-based convolutional neural network models on this dataset. We also demonstrate how the partitioning of the training data and test data can impact the results of models trained with the PDBbind dataset, how performance improves by adding more, lower-quality training data, and how training with docked poses imparts pose sensitivity to the predicted affinity of a complex. Our best performing model, an ensemble of 5 densely connected convolutional newtworks, achieves a root mean squared error of 1.42 and Pearson R of 0.612 on the affinity prediction task, an AUC of 0.956 at binding pose classification, and a 68.4% accuracy at pose selection on the CrossDocked2020 set. By providing data splits for clustered cross-validation and the raw data for the CrossDocked2020 set, we establish the first standardized dataset for training machine learning models to recognize ligands in non-cognate target structures while also greatly expanding the number of poses available for training. In order to facilitate community adoption of this dataset for benchmarking protein-ligand binding affinity prediction, we provide our models, weights, and the CrossDocked2020 set at https://github.com/gnina/models.


Sign in / Sign up

Export Citation Format

Share Document