filtration process
Recently Published Documents


TOTAL DOCUMENTS

637
(FIVE YEARS 198)

H-INDEX

29
(FIVE YEARS 8)

2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Peter Michael Bandelt Riess ◽  
Heiko Briesen ◽  
Daniel Schiochet Nasato

AbstractThe effect of added wall support on granular bed porosity is systematically studied to elucidate performance enhancements in filtration processes achieved by using inserts, as demonstrated experimentally (Bandelt Riess et al. in Chem Eng Technol 2018, 2021). Packed beds of spheres are simulated through discrete element method in cylinders with different internal wall configurations. Three containing systems are generated: concentric cylinders, angular walls, and a combination of both. Variations of particle size and wall friction and thickness are also considered, and the resulting granular bed porosities are analyzed. The porosity increase is proportional to the incorporated wall support; the combination of cylindrical and angular inserts displays the greatest effect (up to 26% increase). The sinusoidal porosity values near the walls are exhibited to clarify the effects. The presented method can change and evaluate granular bed porosity increments, which could lead to filtration process improvements, and the obtained behaviors and profiles can be used to explore additional effects and further systems. Graphical abstract


Author(s):  
Yuliya Melnyk ◽  
Andriy Melnyk

Ultrafiltration devices are currently being developed and manufactured around the world, and productivity varies greatly from 1 to 300,000 m/day. In practice, ultrafiltration parameters are used and performed in batch, semi-periodic and continuous modes. Continuous and semi-periodic modes are mainly used for large volumes of liquids. In the case of a small volume, the batch mode prefers the continuous mode - the area of the membrane is smaller and it is easier to clean. The deposition of spent grease is based on the fact that mechanical impurities and water are in a suspended state and settle over time. When selecting the process of restoring the quality of the lubricant to the required level, first use a mechanical cleaning method to remove free water and hard dirt. In practice, rough cleaning of the lubricant is carried out using filter elements made of metal mesh with a filtration fineness of 60 ... 80 μm. A complex filter element made of non-woven materials is used for fine cleaning. Type of oil filter "FMN" (cleaning accuracy 15 ... 20 microns). However, these filters cannot provide a degree of purification of the spent lubricant, as the latter contains a large amount of carbon contaminants, preferably with a particle size of less than 5 μm. In the process of ultrafiltration of oil, the initial stream is separated and concentrated. Varnish, resin and other small contaminants are retained by the superporous layer on the surface and are continuously washed away by a tangential flow of purified oil. Only cleaned grease can pass through the membrane. This allows for a long filtration process without replacing the membrane filter element. The ultrafiltration process is performed at a pressure of 0.3-1 MPa and a flow rate of 2-5 m/s, using membranes with a size of 0.1-0.005 μm.


2021 ◽  
pp. 9-13

"The aim was to study the influence of the main technological parameters on the process of evaporation off the primary mother liquors of the filtration process of a potassium nitrate suspension formed as a result of crystallization of the conversion solution at a temperature of 0 °C. A theoretical analysis of the system diagram and experimental data established the sequence of the formation of components during the evaporation of mother liquors. At the same time, in the studied intervals of variation of the parameters, potassium chloride is formed first, and then, the joint crystallization of potassium and ammonium chlorides occurs with the continuation of the evaporation process, and when the evaporation degree is more than 30-35%, the joint crystallization of potassium, ammonium and potassium nitrate chlorides occurs. The process analytical parameters influence of the ratio of the primary mother liquor and ammonium nitrate, as well as, the degree of evaporation have been studied. A nomogram has been developed showing the dependence of the input and output parameters on the value of the residual pressure, and it makes possible to determine the values ​​of the evaporation degree at given conditions. "


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3644
Author(s):  
Justyna Zamorska ◽  
Izabela Kiełb-Sotkiewicz

The progressive chemicalization of all areas of everyday life and the development of the industry cause the appearance of various types of pollutants, both in groundwater and surface waters. Kalina Pond (Świętochłowice, Poland) is an example of a degraded water reservoir as a result of many years of activity, among others hard coal mines, storing metallurgical waste by zinc plants, and the activities of the Hajduki Chemical Plants from Chorzów. Inadequate securing of waste heaps resulted in the penetration of pollutants, i.e., phenol, petroleum compounds, PAHs, cyanides, and heavy metals. The aim of the research was to determine the suitability of biopreparations for the removal of pollutants. The research used a bacterial biopreparation from BioArcus, “DBC plus type R5”, to remove petroleum compounds and phenol. Then, in order to restore the microbiological balance, “ACS ODO-1” from the biopreparation was used. The research was carried out in laboratory conditions, using three variants: direct dosing of biopreparations, dosing of biopreparations previously activated by multiplication on the medium, and dosing of biopreparations into water after filtration on a diatomite bed. The optimal method of recultivating water from a reservoir was to filter this water through a diatomite bed and then dose the multiplied bacteria. After the filtration process, the obtained percentage of TOC reduction allowed for the rapid development of microorganisms from the biopreparation, despite the 100 times lower dose used. In addition, the application of lyophilized biopreparation to contaminated water resulted in a very fast biodegradation effect of pollutants, despite the high concentration of numerous toxic compounds.


Coatings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1548
Author(s):  
Xi Chen ◽  
Jiabin Gao ◽  
Yunchang Song ◽  
Yaping Gong ◽  
Meng Qi ◽  
...  

Membrane fouling is a major issue that deteriorates the performance of membrane filtration systems. The electrically assisted membrane filtration process is proven to be effective for alleviating membrane fouling. In this study, we synthesized an electrically conductive membrane by incorporating multiwalled carbon nanotubes (MWCNTs) into polyvinyl chloride (PVC). The synthesized membranes have larger porosity than the PVC membrane (incorporating polyethylene glycol (PEG)), and thus possess much higher water flux under the same testing conditions. The initial and stable water fluxes are 2033 L/(m2·h) and 750 L/(m2·h), respectively, which are much higher than that of the pure PVC membrane. More importantly, the membrane has higher surface charge density and excellent electrical conductivity, but the surface hydrophilicity and toughness decreased with the addition of the MWCNTs. The 25 wt % MWCNTs/PVC composite membrane possesses suitable electrical conductivity of 0.128 S/m. The same membrane shows electro-enhanced antifouling performance during the antifouling test with yeast as a model foulant because the external electric field (−2 V) impulses a strong repulsion force while producing some micro bubbles to repel the foulant; thus, the membrane fouling is suppressed. In the current study, we develop a simple method to fabricate the electrically conductive membrane for application in the electrically assisted membrane filtration process.


2021 ◽  
Vol 10 (2) ◽  
pp. 55-66
Author(s):  
Amélie Vallet-Courbin ◽  
Soizic Lacampagne ◽  
Rose Marie Canal-Llauberes ◽  
Sigolène Mattalana Malzieu ◽  
Tihomir Kanev ◽  
...  

A new Test of Filterability has been developed. Measurements carried out with different types of wines indicate that the new filterability index is a useful tool for understanding and predicting the propensity to fouling of treated or untreated wines, e.g. with or without enzyme addition. The measurement method used in the Test of Filterability, requires only one type of membrane for all types of wine, and uses the same equipment as the traditional Fouling Index. Numerous trials have demonstrated that the filtration of wines is governed by standard blocking law. The definition of the new Test of Filterability, based on this filtration law, is proposed. The choice of membrane and the selection of the optimal pore size were based on the results of the experiments. Current methods used for the determination of fouling properties in wine filtration have been developed for the membrane filtration of small quantities of suspended matter. Enzyme treatment is a process often used in wine clarification. The new Test of Filterability indicates the best conditions for the filtration of all types of wines. The test is easy to implement and has been validated with various wines. This new Test of Filterability is an important tool for winemakers as it constitutes a simplified test of a wine's filterability. The new test may also be used to determine the filtration process that is best adapted to each wine while reducing the number of operations. The same approach may be adopted for the filtration of other liquids. 


2021 ◽  
Author(s):  
Arnaud Cadix ◽  
Steven Meeker ◽  
Swati Kaushik ◽  
Elodie Haumesser ◽  
Guillaume Ovarlez

Abstract Fluid loss control additives are critical constituents in a cement slurry formulation to ensure even cement placement and ultimately satisfactory zonal isolation. Many technological options have been developed over the past decades to design fluid loss control additives for cementing. The most popular technologies as of today are either based on water soluble polymers or colloidal particles like latexes. As an alternative approach, in this paper we introduce a new technology based on associative or "sticky" microgels. These microgels are able to associate with one another at elevated concentration but, more surprisingly, are also able to associate under shear in the dilute regime during a filtration process. As a consequence these additives demonstrate outstanding performance as fluid loss control agents. This study focuses first on standard API filtration tests using sticky microgels, and on how their behavior in application differs from traditional systems, in particular water-based soluble polymers such as cellulosic derivatives or synthetic polymers. Our investigations then focus on the working mechanism of the microgel system by analyzing adsorption on the cement surface, rheology, and filter cake structure using Mercury Intrusion Porosimetry (MIP). Finally the behavior of sticky microgels in model filtration tests is explored with either filtration against porous ceramic discs or using microfluidic chips allowing a direct visualization of microgels during filtration. This study demonstrates that associative microgels are not controlling fluid loss through a simple size match between particles and pores within the filter cake but rather through shear-induced aggregation. Microfluidic observations reveal that aggregation occurs irreversibly as microgels are forced through the pores as the filtration process occurs. The shear-induced associated gels are particularly effective at reducing dramatically the filter cake permeability and allowing gas migration control. Interestingly the shear-induced aggregation of associative μgels seems to confer self-adaptive properties of the fluid loss additives with respect to the pore network to be clogged. Indeed, formation of shear aggregated gels larger than the individual microgels can be used to limit fluid loss even if the pore sizes are much larger than the individual microgels.


2021 ◽  
Vol 945 (1) ◽  
pp. 012040
Author(s):  
S Narendran ◽  
Bhaskar Rao Yakkala ◽  
J Cyril Robinson Azariah ◽  
A Sivagami

Abstract The process of water purification or water filtration takes several stage approaches. In which, the membrane model process is an important role in filtration. This research work is done by considering double filtration method for filtration process and it is modelled by clustering of Artificial Neural Network and multiple linear regression approach. In this research work, ten different physical parameters and chemical parameters for designing our model. The measurement of groundwater quality for both irrigation and drinking water is a complex process due to various factors such as geology, hydrogeology, biology, etc. With the help of Neural network and fuzzy logic systems approach, we have studied the quality of water in various part of south India. For the process of double filtration process, we have taken rapid sand filter followed by slow sand filter. For the membrane process of water treatment, the membrane chosen for the research are reverse osmosis, microfiltration and nanofiltration.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012069
Author(s):  
Ghaith AlMasraf ◽  
Safanah Albayati

Abstract This research aims to find a new approach to deal with cancer, by targeting a protein that controls the growth and increases the size of the tumour. The approach uses computer-aid drug designed to find the best drug for inhibiting f Methionine Aminopeptidase (Metap2) which is an enzyme that is responsible for starting the synthesis of new protein. The inhibition of the enzyme was found to be crucial in stopping the growth of the tumour and its development. In this research, an in-silico approach was conducted to obtain compounds that are capable of inhibiting the enzyme with non-toxic features. This is done by using Ligand-Based. The Zinc15 and National Institute of Cancer Data (NCI) Databases were screened to attain a variety of manufactured Compounds. Then, molecular docking filtration process was carried out using PyRx, and Autodock4. Finally, SwissADME protocol was used to show the ADMET properties and that compounds can permit the blood barriers and validate better pharmacokinetic properties than the Fumagillin.


Sign in / Sign up

Export Citation Format

Share Document