scholarly journals Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data

2018 ◽  
Vol 20 (4) ◽  
pp. 1583-1589 ◽  
Author(s):  
Shun H Yip ◽  
Pak Chung Sham ◽  
Junwen Wang

Abstract Traditional RNA sequencing (RNA-seq) allows the detection of gene expression variations between two or more cell populations through differentially expressed gene (DEG) analysis. However, genes that contribute to cell-to-cell differences are not discoverable with RNA-seq because RNA-seq samples are obtained from a mixture of cells. Single-cell RNA-seq (scRNA-seq) allows the detection of gene expression in each cell. With scRNA-seq, highly variable gene (HVG) discovery allows the detection of genes that contribute strongly to cell-to-cell variation within a homogeneous cell population, such as a population of embryonic stem cells. This analysis is implemented in many software packages. In this study, we compare seven HVG methods from six software packages, including BASiCS, Brennecke, scLVM, scran, scVEGs and Seurat. Our results demonstrate that reproducibility in HVG analysis requires a larger sample size than DEG analysis. Discrepancies between methods and potential issues in these tools are discussed and recommendations are made.

2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background: CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear. Results: We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions: To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Giancarlo Bonora ◽  
Vijay Ramani ◽  
Ritambhara Singh ◽  
He Fang ◽  
Dana L. Jackson ◽  
...  

Abstract Background Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data from these three modalities obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. Results Allele-specific contact decay profiles obtained by single-cell Hi-C clearly show that the inactive X chromosome has a unique profile in differentiated cells that have undergone X inactivation. Loss of this inactive X-specific structure at mitosis is followed by its reappearance during the cell cycle, suggesting a “bookmark” mechanism. Differentiation of embryonic stem cells to follow the onset of X inactivation is associated with changes in contact decay profiles that occur in parallel on both the X chromosomes and autosomes. Single-cell RNA-seq and ATAC-seq show evidence of a delay in female versus male cells, due to the presence of two active X chromosomes at early stages of differentiation. The onset of the inactive X-specific structure in single cells occurs later than gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Single-cell Hi-C highlights evidence of discrete changes in nuclear structure characterized by the acquisition of very long-range contacts throughout the nucleus. Novel computational approaches allow for the effective alignment of single-cell gene expression, chromatin accessibility, and 3D chromosome structure. Conclusions Based on trajectory analyses, three distinct nuclear structure states are detected reflecting discrete and profound simultaneous changes not only to the structure of the X chromosomes, but also to that of autosomes during differentiation. Our study reveals that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.


BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation remains unclear. Results We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating that gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, implying tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explains why knockdown of CTCF leads to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found that cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2017 ◽  
Author(s):  
Wei Vivian Li ◽  
Jingyi Jessica Li

The emerging single cell RNA sequencing (scRNA-seq) technologies enable the investigation of transcriptomic landscapes at single-cell resolution. The analysis of scRNA-seq data is complicated by excess zero or near zero counts, the so-called dropouts due to the low amounts of mRNA sequenced within individual cells. Downstream analysis of scRNA-seq would be severely biased if the dropout events are not properly corrected. We introduce scImpute, a statistical method to accurately and robustly impute the dropout values in scRNA-seq data. ScImpute automatically identifies gene expression values affected by dropout events, and only perform imputation on these values without introducing new bias to the rest data. ScImpute also detects outlier or rare cells and excludes them from imputation. Evaluation based on both simulated and real scRNA-seq data on mouse embryos, mouse brain cells, human blood cells, and human embryonic stem cells suggests that scImpute is an effective tool to recover transcriptome dynamics masked by dropout events. scImpute is shown to correct false zero counts, enhance the clustering of cell populations and subpopulations, improve the accuracy of differential expression analysis, and aid the study of gene expression dynamics.


2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

AbstractBackgroundCCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear.ResultsWe knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes.ConclusionsTo our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2019 ◽  
Author(s):  
Wei Wang ◽  
Gang Ren ◽  
Ni Hong ◽  
Wenfei Jin

Abstract Background: CCCTC-Binding Factor (CTCF), also known as 11-zinc finger protein, participates in many cellular processes, including insulator activity, transcriptional regulation and organization of chromatin architecture. Based on single cell flow cytometry and single cell RNA-FISH analyses, our previous study showed that deletion of CTCF binding site led to a significantly increase of cellular variation of its target gene. However, the effect of CTCF on genome-wide landscape of cell-to-cell variation is unclear. Results: We knocked down CTCF in EL4 cells using shRNA, and conducted single cell RNA-seq on both wild type (WT) cells and CTCF-Knockdown (CTCF-KD) cells using Fluidigm C1 system. Principal component analysis of single cell RNA-seq data showed that WT and CTCF-KD cells concentrated in two different clusters on PC1, indicating gene expression profiles of WT and CTCF-KD cells were systematically different. Interestingly, GO terms including regulation of transcription, DNA binding, Zinc finger and transcription factor binding were significantly enriched in CTCF-KD-specific highly variable genes, indicating tissue-specific genes such as transcription factors were highly sensitive to CTCF level. The dysregulation of transcription factors potentially explain why knockdown of CTCF lead to systematic change of gene expression. In contrast, housekeeping genes such as rRNA processing, DNA repair and tRNA processing were significantly enriched in WT-specific highly variable genes, potentially due to a higher cellular variation of cell activity in WT cells compared to CTCF-KD cells. We further found cellular variation-increased genes were significantly enriched in down-regulated genes, indicating CTCF knockdown simultaneously reduced the expression levels and increased the expression noise of its regulated genes. Conclusions: To our knowledge, this is the first attempt to explore genome-wide landscape of cellular variation after CTCF knockdown. Our study not only advances our understanding of CTCF function in maintaining gene expression and reducing expression noise, but also provides a framework for examining gene function.


2021 ◽  
Vol 2 (2) ◽  
pp. 100426
Author(s):  
Celia Alda-Catalinas ◽  
Melanie A. Eckersley-Maslin ◽  
Wolf Reik

Aquaculture ◽  
2021 ◽  
pp. 737194
Author(s):  
Lingzhan Xue ◽  
Dan Jia ◽  
Luohao Xu ◽  
Zhen Huang ◽  
Haiping Fan ◽  
...  

2019 ◽  
Author(s):  
Ugur M. Ayturk ◽  
Joseph P. Scollan ◽  
Alexander Vesprey ◽  
Christina M. Jacobsen ◽  
Paola Divieti Pajevic ◽  
...  

ABSTRACTSingle cell RNA-seq (scRNA-seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-seq on freshly recovered long bone endocortical cells from mice that received either vehicle or Sclerostin-neutralizing antibody for 1 week. Bone anabolism-associated transcripts were also not significantly increased in immature and mature osteoblasts recovered from Sclerostin-neutralizing antibody treated mice; this is likely a consequence of being underpowered to detect modest changes in gene expression, since only 7% of the sequenced endocortical cells were osteoblasts, and a limited portion of their transcriptomes were sampled. We conclude that scRNA-seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required.


Sign in / Sign up

Export Citation Format

Share Document