crisscrosslinkeR: identification and visualization of protein–RNA and protein–protein interactions from crosslinking mass spectrometry

Author(s):  
Emma H Gail ◽  
Anup D Shah ◽  
Ralf B Schittenhelm ◽  
Chen Davidovich

Abstract Summary Unbiased detection of protein–protein and protein–RNA interactions within ribonucleoprotein complexes are enabled through crosslinking followed by mass spectrometry. Yet, different methods detect different types of molecular interactions and therefore require the usage of different software packages with limited compatibility. We present crisscrosslinkeR, an R package that maps both protein–protein and protein–RNA interactions detected by different types of approaches for crosslinking with mass spectrometry. crisscrosslinkeR produces output files that are compatible with visualization using popular software packages for the generation of publication-quality figures. Availability and implementation crisscrosslinkeR is a free and open-source package, available through GitHub: github.com/egmg726/crisscrosslinker. Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Nils Kurzawa ◽  
André Mateus ◽  
Mikhail M Savitski

Abstract Summary Rtpca is an R package implementing methods for inferring protein–protein interactions (PPIs) based on thermal proteome profiling experiments of a single condition or in a differential setting via an approach called thermal proximity coaggregation. It offers user-friendly tools to explore datasets for their PPI predictive performance and easily integrates with available R packages. Availability and implementation Rtpca is available from Bioconductor (https://bioconductor.org/packages/Rtpca). Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (5) ◽  
pp. 1647-1648 ◽  
Author(s):  
Bilal Wajid ◽  
Hasan Iqbal ◽  
Momina Jamil ◽  
Hafsa Rafique ◽  
Faria Anwar

Abstract Motivation Metabolomics is a data analysis and interpretation field aiming to study functions of small molecules within the organism. Consequently Metabolomics requires researchers in life sciences to be comfortable in downloading, installing and scripting of software that are mostly not user friendly and lack basic GUIs. As the researchers struggle with these skills, there is a dire need to develop software packages that can automatically install software pipelines truly speeding up the learning curve to build software workstations. Therefore, this paper aims to provide MetumpX, a software package that eases in the installation of 103 software by automatically resolving their individual dependencies and also allowing the users to choose which software works best for them. Results MetumpX is a Ubuntu-based software package that facilitate easy download and installation of 103 tools spread across the standard metabolomics pipeline. As far as the authors know MetumpX is the only solution of its kind where the focus lies on automating development of software workstations. Availability and implementation https://github.com/hasaniqbal777/MetumpX-bin. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Daniel G Bunis ◽  
Jared Andrews ◽  
Gabriela K Fragiadakis ◽  
Trevor D Burt ◽  
Marina Sirota

Abstract Summary A visualization suite for major forms of bulk and single-cell RNAseq data in R. dittoSeq is color blindness-friendly by default, robustly documented to power ease-of-use and allows highly customizable generation of both daily-use and publication-quality figures. Availability and implementation dittoSeq is an R package available through Bioconductor via an open source MIT license. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (16) ◽  
pp. 4516-4518 ◽  
Author(s):  
Weronika Puchała ◽  
Michał Burdukiewicz ◽  
Michał Kistowski ◽  
Katarzyna A Dąbrowska ◽  
Aleksandra E Badaczewska-Dawid ◽  
...  

Abstract Motivation Hydrogen–deuterium mass spectrometry (HDX-MS) is a rapidly developing technique for monitoring dynamics and interactions of proteins. The development of new devices has to be followed with new software suites addressing emerging standards in data analysis. Results We propose HaDeX, a novel tool for processing, analysis and visualization of HDX-MS experiments. HaDeX supports a reproducible analytical process, including data exploration, quality control and generation of publication-quality figures. Availability and implementation HaDeX is available primarily as a web-server (http://mslab-ibb.pl/shiny/HaDeX/), but its all functionalities are also accessible as the R package (https://CRAN.R-project.org/package=HaDeX) and standalone software (https://sourceforge.net/projects/HaDeX/). Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (14) ◽  
pp. 2523-2524 ◽  
Author(s):  
S Castillo-Lara ◽  
J F Abril

Abstract Motivation Protein–protein interactions (PPIs) are very important to build models for understanding many biological processes. Although several databases hold many of these interactions, exploring them, selecting those relevant for a given subject and contextualizing them can be a difficult task for researchers. Extracting PPIs directly from the scientific literature can be very helpful for providing such context, as the sentences describing these interactions may give insights to researchers in helpful ways. Results We have developed PPaxe, a python module and a web application that allows users to extract PPIs and protein occurrence from a given set of PubMed and PubMedCentral articles. It presents the results of the analysis in different ways to help researchers export, filter and analyze the results easily. Availability and implementation PPaxe web demo is freely available at https://compgen.bio.ub.edu/PPaxe. All the software can be downloaded from https://compgen.bio.ub.edu/PPaxe/download, including a command-line version and docker containers for an easy installation. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
John Zobolas ◽  
Vasundra Touré ◽  
Martin Kuiper ◽  
Steven Vercruysse

Abstract Summary We present a set of software packages that provide uniform access to diverse biological vocabulary resources that are instrumental for current biocuration efforts and tools. The Unified Biological Dictionaries (UniBioDicts or UBDs) provide a single query-interface for accessing the online API services of leading biological data providers. Given a search string, UBDs return a list of matching term, identifier and metadata units from databases (e.g. UniProt), controlled vocabularies (e.g. PSI-MI) and ontologies (e.g. GO, via BioPortal). This functionality can be connected to input fields (user-interface components) that offer autocomplete lookup for these dictionaries. UBDs create a unified gateway for accessing life science concepts, helping curators find annotation terms across resources (based on descriptive metadata and unambiguous identifiers), and helping data users search and retrieve the right query terms. Availability and implementation The UBDs are available through npm and the code is available in the GitHub organisation UniBioDicts (https://github.com/UniBioDicts) under the Affero GPL license. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Qianmu Yuan ◽  
Jianwen Chen ◽  
Huiying Zhao ◽  
Yaoqi Zhou ◽  
Yuedong Yang

Abstract Motivation Protein–protein interactions (PPI) play crucial roles in many biological processes, and identifying PPI sites is an important step for mechanistic understanding of diseases and design of novel drugs. Since experimental approaches for PPI site identification are expensive and time-consuming, many computational methods have been developed as screening tools. However, these methods are mostly based on neighbored features in sequence, and thus limited to capture spatial information. Results We propose a deep graph-based framework deep Graph convolutional network for Protein–Protein-Interacting Site prediction (GraphPPIS) for PPI site prediction, where the PPI site prediction problem was converted into a graph node classification task and solved by deep learning using the initial residual and identity mapping techniques. We showed that a deeper architecture (up to eight layers) allows significant performance improvement over other sequence-based and structure-based methods by more than 12.5% and 10.5% on AUPRC and MCC, respectively. Further analyses indicated that the predicted interacting sites by GraphPPIS are more spatially clustered and closer to the native ones even when false-positive predictions are made. The results highlight the importance of capturing spatially neighboring residues for interacting site prediction. Availability and implementation The datasets, the pre-computed features, and the source codes along with the pre-trained models of GraphPPIS are available at https://github.com/biomed-AI/GraphPPIS. The GraphPPIS web server is freely available at https://biomed.nscc-gz.cn/apps/GraphPPIS. Supplementary information Supplementary data are available at Bioinformatics online.


2016 ◽  
Vol 2016 ◽  
pp. 1-13
Author(s):  
Stefan Kalkhof ◽  
Stefan Schildbach ◽  
Conny Blumert ◽  
Friedemann Horn ◽  
Martin von Bergen ◽  
...  

The functionality of most proteins is regulated by protein-protein interactions. Hence, the comprehensive characterization of the interactome is the next milestone on the path to understand the biochemistry of the cell. A powerful method to detect protein-protein interactions is a combination of coimmunoprecipitation or affinity purification with quantitative mass spectrometry. Nevertheless, both methods tend to precipitate a high number of background proteins due to nonspecific interactions. To address this challenge the software Protein-Protein-Interaction-Optimizer (PIPINO) was developed to perform an automated data analysis, to facilitate the selection of bona fide binding partners, and to compare the dynamic of interaction networks. In this study we investigated the STAT1 interaction network and its activation dependent dynamics. Stable isotope labeling by amino acids in cell culture (SILAC) was applied to analyze the STAT1 interactome after streptavidin pull-down of biotagged STAT1 from human embryonic kidney 293T cells with and without activation. Starting from more than 2,000 captured proteins 30 potential STAT1 interaction partners were extracted. Interestingly, more than 50% of these were already reported or predicted to bind STAT1. Furthermore, 16 proteins were found to affect the binding behavior depending on STAT1 phosphorylation such as STAT3 or the importin subunits alpha 1 and alpha 6.


Sign in / Sign up

Export Citation Format

Share Document