scholarly journals Ribo-ODDR: Oligo design pipeline for experiment-specific rRNA depletion in ribo-seq

Author(s):  
Ferhat Alkan ◽  
Joana Silva ◽  
Eric Pintó Barberà ◽  
William J Faller

Abstract Motivation Ribosome Profiling (Ribo-seq) has revolutionized the study of RNA translation by providing information on ribosome positions across all translated RNAs with nucleotide-resolution. Yet several technical limitations restrict the sequencing depth of such experiments, the most common of which is the overabundance of rRNA fragments. Various strategies can be employed to tackle this issue, including the use of commercial rRNA depletion kits. However, as they are designed for more standardized RNAseq experiments, they may perform suboptimally in Ribo-seq. In order to overcome this, it is possible to use custom biotinylated oligos complementary to the most abundant rRNA fragments, however currently no computational framework exists to aid the design of optimal oligos. Results Here, we first show that a major confounding issue is that the rRNA fragments generated via Ribo-seq vary significantly with differing experimental conditions, suggesting that a “one-size-fits-all” approach may be inefficient. Therefore we developed Ribo-ODDR, an oligo design pipeline integrated with a user-friendly interface that assists in oligo selection for efficient experiment-specific rRNA depletion. Ribo-ODDR uses preliminary data to identify the most abundant rRNA fragments, and calculates the rRNA depletion efficiency of potential oligos. We experimentally show that Ribo-ODDR designed oligos outperform commercially available kits and lead to a significant increase in rRNA depletion in Ribo-seq. Availability Ribo-ODDR is freely accessible at https://github.com/fallerlab/Ribo-ODDR Supplementary information Supplementary data are available at Bioinformatics online.

Author(s):  
Ferhat Alkan ◽  
Joana Silva ◽  
Eric Pintó Barberà ◽  
William J. Faller

AbstractRibosome profiling (Ribo-seq) has revolutionized the study of RNA translation by providing information on ribosome positions across all translated RNAs with nucleotide-resolution. Yet, several technical limitations restrict the sequencing depth of such experiments, the most common of which is the overabundance of ribosomal RNA (rRNA) fragments, which frequently make up more than 90% of sequencing reads if not depleted. Various strategies can be employed to tackle this issue, including the use of commercial rRNA depletion kits. However, as they are designed for more standardized RNAseq experiments, such kits may perform suboptimally in Ribo-seq. There is therefore potential to significantly increase the information that can be gleaned from Ribo-seq experiments. Here we show that a major confounding issue is that the rRNA fragments generated via Ribo-seq vary significantly with differing experimental conditions, suggesting that a “one-size-fits-all” approach may result in inefficient rRNA depletion. In order to overcome this, it is possible to use custom-designed biotinylated oligos complementary to the most abundant rRNA fragments, however currently no computational framework exists to aid the design of optimal oligos. We have developed Ribo-ODDR, an oligo design pipeline integrated with a user-friendly interface that assists in oligo selection for efficient experiment-specific rRNA depletion. Ribo-ODDR uses preliminary data to identify the most abundant rRNA fragments, and calculates the rRNA depletion efficiency of potential oligos. We show that Ribo-ODDR designed oligos lead to a significant increase in rRNA depletion, and increased sequencing depth as a result, providing substantial information that would otherwise have been lost. Ribo-ODDR is freely accessible at https://github.com/fallerlab/Ribo-ODDR


2020 ◽  
Vol 48 (W1) ◽  
pp. W218-W229 ◽  
Author(s):  
Qi Liu ◽  
Tanya Shvarts ◽  
Piotr Sliz ◽  
Richard I Gregory

Abstract Ribosome profiling (Ribo-seq) is a powerful technology for globally monitoring RNA translation; ranging from codon occupancy profiling, identification of actively translated open reading frames (ORFs), to the quantification of translational efficiency under various physiological or experimental conditions. However, analyzing and decoding translation information from Ribo-seq data is not trivial. Although there are many existing tools to analyze Ribo-seq data, most of these tools are designed for specific or limited functionalities and an easy-to-use integrated tool to analyze Ribo-seq data is lacking. Fortunately, the small size (26–34 nt) of ribosome protected fragments (RPFs) in Ribo-seq and the relatively small amount of sequencing data greatly facilitates the development of such a web platform, which is easy to manipulate for users with or without bioinformatic expertise. Thus, we developed RiboToolkit (http://rnabioinfor.tch.harvard.edu/RiboToolkit), a convenient, freely available, web-based service to centralize Ribo-seq data analyses, including data cleaning and quality evaluation, expression analysis based on RPFs, codon occupancy, translation efficiency analysis, differential translation analysis, functional annotation, translation metagene analysis, and identification of actively translated ORFs. Besides, easy-to-use web interfaces were developed to facilitate data analysis and intuitively visualize results. Thus, RiboToolkit will greatly facilitate the study of mRNA translation based on ribosome profiling.


Author(s):  
S. Papavinasam ◽  
R. W. Revie

Addition of inhibitors can provide a cost-effective method for controlling internal corrosion of pipelines. To select appropriate inhibitors and their concentrations, several laboratory experiments are usually performed. Test methodologies to evaluate inhibitors for a particular field should be carried out to simulate the conditions in the pipeline. Because several interacting parameters influence corrosion, and hence inhibitor performance, simulation of field operating conditions in the laboratory is often difficult. In this paper, user-friendly software to optimize the laboratory experimental conditions to simulate field operating conditions is discussed. The merits of the program in selecting commercial inhibitors and in designing cost-effective inhibitors for future application are described.


Author(s):  
Michaela Frye ◽  
Susanne Bornelöv

Abstract Summary CONCUR is a standalone tool for codon usage analysis in ribosome profiling experiments. CONCUR uses the aligned reads in BAM format to estimate codon counts at the ribosome E-, P- and A-sites and at flanking positions. Availability and implementation CONCUR is written in Perl and is freely available at https://github.com/susbo/concur. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (12) ◽  
pp. 3913-3915
Author(s):  
Hemi Luan ◽  
Xingen Jiang ◽  
Fenfen Ji ◽  
Zhangzhang Lan ◽  
Zongwei Cai ◽  
...  

Abstract Motivation Liquid chromatography–mass spectrometry-based non-targeted metabolomics is routinely performed to qualitatively and quantitatively analyze a tremendous amount of metabolite signals in complex biological samples. However, false-positive peaks in the datasets are commonly detected as metabolite signals by using many popular software, resulting in non-reliable measurement. Results To reduce false-positive calling, we developed an interactive web tool, termed CPVA, for visualization and accurate annotation of the detected peaks in non-targeted metabolomics data. We used a chromatogram-centric strategy to unfold the characteristics of chromatographic peaks through visualization of peak morphology metrics, with additional functions to annotate adducts, isotopes and contaminants. CPVA is a free, user-friendly tool to help users to identify peak background noises and contaminants, resulting in decrease of false-positive or redundant peak calling, thereby improving the data quality of non-targeted metabolomics studies. Availability and implementation The CPVA is freely available at http://cpva.eastus.cloudapp.azure.com. Source code and installation instructions are available on GitHub: https://github.com/13479776/cpva. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Zhuohang Yu ◽  
Zengrui Wu ◽  
Weihua Li ◽  
Guixia Liu ◽  
Yun Tang

Abstract Summary MetaADEDB is an online database we developed to integrate comprehensive information on adverse drug events (ADEs). The first version of MetaADEDB was released in 2013 and has been widely used by researchers. However, it has not been updated for more than seven years. Here, we reported its second version by collecting more and newer data from the U.S. FDA Adverse Event Reporting System (FAERS) and Canada Vigilance Adverse Reaction Online Database, in addition to the original three sources. The new version consists of 744 709 drug–ADE associations between 8498 drugs and 13 193 ADEs, which has an over 40% increase in drug–ADE associations compared to the previous version. Meanwhile, we developed a new and user-friendly web interface for data search and analysis. We hope that MetaADEDB 2.0 could provide a useful tool for drug safety assessment and related studies in drug discovery and development. Availability and implementation The database is freely available at: http://lmmd.ecust.edu.cn/metaadedb/. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Vol 7 ◽  
Author(s):  
Cody Ising ◽  
Pedro Rodriguez ◽  
Daniel Lopez ◽  
Jeffrey Santner

In combustion chemistry experiments, reaction rates are often extracted from complex experiments using detailed models. To aid in this process, experiments are performed such that measurable quantities, such as species concentrations, flame speed, and ignition delay, are sensitive to reaction rates of interest. In this work, a systematic method for determining such sensitized experimental conditions is demonstrated. An open-source python script was created using the Cantera module to simulate thousands of 0D and hundreds of 1D combustion chemistry experiments in parallel across a broad, user-defined range of mixture conditions. The results of the simulation are post-processed to normalize and compare sensitivity values among reactions and across initial conditions for time-varying and steady-state simulations, in order to determine the “most useful” experimental conditions. This software can be utilized by researchers as a fast, user-friendly screening tool to determine the thermodynamic and mixture parameters for an experimental campaign. We demonstrate this software through two case studies comparing results of the 0D script against a shock tube experiment and results of the 1D script against a spherical flame experiment. In the shock tube case study we present mixture conditions compared to those used in the literature to study H + O2 (+M)→HO2(+M). In the flame case study, we present mixture conditions compared to those in the literature to study formyl radical (HCO) decomposition and oxidation reactions. The systematically determined experimental conditions identified in the present work are similar to the conditions chosen in the literature.


Sign in / Sign up

Export Citation Format

Share Document