scholarly journals POAVIZ: a Partial Order Multiple Sequence Alignment Visualizer

2003 ◽  
Vol 19 (11) ◽  
pp. 1446-1448 ◽  
Author(s):  
C. Grasso ◽  
M. Quist ◽  
K. Ke ◽  
C. Lee
2002 ◽  
Vol 18 (3) ◽  
pp. 452-464 ◽  
Author(s):  
C. Lee ◽  
C. Grasso ◽  
M. F. Sharlow

2020 ◽  
Author(s):  
Francesco Peverelli ◽  
Lorenzo Di Tucci ◽  
Marco D. Santambrogio ◽  
Nan Ding ◽  
Steven Hofmeyr ◽  
...  

AbstractAs third generation sequencing technologies become more reliable and widely used to solve several genome-related problems, self-correction of long reads is becoming the preferred method to reduce the error rate of Pacific Biosciences and Oxford Nanopore long reads, that is now around 10-12%. Several of these self-correction methods rely on some form of Multiple Sequence Alignment (MSA) to obtain a consensus sequence for the original reads. In particular, error-correction tools such as RACON and CONSENT use Partial Order (PO) graph alignment to accomplish this task. PO graph alignment, which is computationally more expensive than optimal global pairwise alignment between two sequences, needs to be performed several times for each read during the error correction process. GPUs have proven very effective in accelerating several compute-intensive tasks in different scientific fields. We harnessed the power of these architectures to accelerate the error correction process of existing self-correction tools, to improve the efficiency of this step of genome analysis.In this paper, we introduce a GPU-accelerated version of the PO alignment presented in the POA v2 software library, implemented on an NVIDIA Tesla V100 GPU. We obtain up to 6.5x speedup compared to 64 CPU threads run on two 2.3 GHz 16-core Intel Xeon Processors E5-2698 v3. In our implementation we focused on the alignment of smaller sequences, as the CONSENT segmentation strategy based on k-mer chaining provides an optimal opportunity to exploit the parallel-processing power of GPUs. To demonstrate this, we have integrated our kernel in the CONSENT software. This accelerated version of CONSENT provides a speedup for the whole error correction step that ranges from 1.95x to 8.5x depending on the input reads.


2020 ◽  
Vol 17 (1) ◽  
pp. 59-77
Author(s):  
Anand Kumar Nelapati ◽  
JagadeeshBabu PonnanEttiyappan

Background:Hyperuricemia and gout are the conditions, which is a response of accumulation of uric acid in the blood and urine. Uric acid is the product of purine metabolic pathway in humans. Uricase is a therapeutic enzyme that can enzymatically reduces the concentration of uric acid in serum and urine into more a soluble allantoin. Uricases are widely available in several sources like bacteria, fungi, yeast, plants and animals.Objective:The present study is aimed at elucidating the structure and physiochemical properties of uricase by insilico analysis.Methods:A total number of sixty amino acid sequences of uricase belongs to different sources were obtained from NCBI and different analysis like Multiple Sequence Alignment (MSA), homology search, phylogenetic relation, motif search, domain architecture and physiochemical properties including pI, EC, Ai, Ii, and were performed.Results:Multiple sequence alignment of all the selected protein sequences has exhibited distinct difference between bacterial, fungal, plant and animal sources based on the position-specific existence of conserved amino acid residues. The maximum homology of all the selected protein sequences is between 51-388. In singular category, homology is between 16-337 for bacterial uricase, 14-339 for fungal uricase, 12-317 for plants uricase, and 37-361 for animals uricase. The phylogenetic tree constructed based on the amino acid sequences disclosed clusters indicating that uricase is from different source. The physiochemical features revealed that the uricase amino acid residues are in between 300- 338 with a molecular weight as 33-39kDa and theoretical pI ranging from 4.95-8.88. The amino acid composition results showed that valine amino acid has a high average frequency of 8.79 percentage compared to different amino acids in all analyzed species.Conclusion:In the area of bioinformatics field, this work might be informative and a stepping-stone to other researchers to get an idea about the physicochemical features, evolutionary history and structural motifs of uricase that can be widely used in biotechnological and pharmaceutical industries. Therefore, the proposed in silico analysis can be considered for protein engineering work, as well as for gout therapy.


Sign in / Sign up

Export Citation Format

Share Document