scholarly journals A framework for space-efficient variable-order Markov models

2019 ◽  
Vol 35 (22) ◽  
pp. 4607-4616
Author(s):  
Fabio Cunial ◽  
Jarno Alanko ◽  
Djamal Belazzougui

Abstract Motivation Markov models with contexts of variable length are widely used in bioinformatics for representing sets of sequences with similar biological properties. When models contain many long contexts, existing implementations are either unable to handle genome-scale training datasets within typical memory budgets, or they are optimized for specific model variants and are thus inflexible. Results We provide practical, versatile representations of variable-order Markov models and of interpolated Markov models, that support a large number of context-selection criteria, scoring functions, probability smoothing methods, and interpolations, and that take up to four times less space than previous implementations based on the suffix array, regardless of the number and length of contexts, and up to ten times less space than previous trie-based representations, or more, while matching the size of related, state-of-the-art data structures from Natural Language Processing. We describe how to further compress our indexes to a quantity related to the redundancy of the training data, saving up to 90% of their space on very repetitive datasets, and making them become up to 60 times smaller than previous implementations based on the suffix array. Finally, we show how to exploit constraints on the length and frequency of contexts to further shrink our compressed indexes to half of their size or more, achieving data structures that are a hundred times smaller than previous implementations based on the suffix array, or more. This allows variable-order Markov models to be used with bigger datasets and with longer contexts on the same hardware, thus possibly enabling new applications. Availability and implementation https://github.com/jnalanko/VOMM Supplementary information Supplementary data are available at Bioinformatics online.

2018 ◽  
Author(s):  
Fabio Cunial ◽  
Jarno Alanko ◽  
Djamal Belazzougui

AbstractMotivationMarkov models with contexts of variable length are widely used in bioinformatics for representing sets of sequences with similar biological properties. When models contain many long contexts, existing implementations are either unable to handle genome-scale training datasets within typical memory budgets, or they are optimized for specific model variants and are thus inflexible.ResultsWe provide practical, versatile representations of variable-order Markov models and of interpolated Markov models, that support a large number of context-selection criteria, scoring functions, probability smoothing methods, and interpolations, and that take up to 4 times less space than previous implementations based on the suffix array, regardless of the number and length of contexts, and up to 10 times less space than previous trie-based representations, or more, while matching the size of related, state-of-the-art data structures from Natural Language Processing. We describe how to further compress our indexes to a quantity related to the redundancy of the training data, saving up to 90% of their space on repetitive datasets, and making them become up to 60 times smaller than previous implementations based on the suffix array. Finally, we show how to exploit constraints on the length and frequency of contexts to further shrink our compressed indexes to half of their size or more, achieving data structures that are 100 times smaller than previous implementations based on the suffix array, or more. This allows variable-order Markov models to be trained on bigger datasets and with longer contexts on the same hardware, thus possibly enabling new applications.Availability and implementationhttps://github.com/jnalanko/VOMM


2020 ◽  
Vol 36 (9) ◽  
pp. 2690-2696
Author(s):  
Jarkko Toivonen ◽  
Pratyush K Das ◽  
Jussi Taipale ◽  
Esko Ukkonen

Abstract Motivation Position-specific probability matrices (PPMs, also called position-specific weight matrices) have been the dominating model for transcription factor (TF)-binding motifs in DNA. There is, however, increasing recent evidence of better performance of higher order models such as Markov models of order one, also called adjacent dinucleotide matrices (ADMs). ADMs can model dependencies between adjacent nucleotides, unlike PPMs. A modeling technique and software tool that would estimate such models simultaneously both for monomers and their dimers have been missing. Results We present an ADM-based mixture model for monomeric and dimeric TF-binding motifs and an expectation maximization algorithm MODER2 for learning such models from training data and seeds. The model is a mixture that includes monomers and dimers, built from the monomers, with a description of the dimeric structure (spacing, orientation). The technique is modular, meaning that the co-operative effect of dimerization is made explicit by evaluating the difference between expected and observed models. The model is validated using HT-SELEX and generated datasets, and by comparing to some earlier PPM and ADM techniques. The ADM models explain data slightly better than PPM models for 314 tested TFs (or their DNA-binding domains) from four families (bHLH, bZIP, ETS and Homeodomain), the ADM mixture models by MODER2 being the best on average. Availability and implementation Software implementation is available from https://github.com/jttoivon/moder2. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (14) ◽  
pp. 4130-4136
Author(s):  
David J Burks ◽  
Rajeev K Azad

Abstract Motivation Alignment-free, stochastic models derived from k-mer distributions representing reference genome sequences have a rich history in the classification of DNA sequences. In particular, the variants of Markov models have previously been used extensively. Higher-order Markov models have been used with caution, perhaps sparingly, primarily because of the lack of enough training data and computational power. Advances in sequencing technology and computation have enabled exploitation of the predictive power of higher-order models. We, therefore, revisited higher-order Markov models and assessed their performance in classifying metagenomic sequences. Results Comparative assessment of higher-order models (HOMs, 9th order or higher) with interpolated Markov model, interpolated context model and lower-order models (8th order or lower) was performed on metagenomic datasets constructed using sequenced prokaryotic genomes. Our results show that HOMs outperform other models in classifying metagenomic fragments as short as 100 nt at all taxonomic ranks, and at lower ranks when the fragment size was increased to 250 nt. HOMs were also found to be significantly more accurate than local alignment which is widely relied upon for taxonomic classification of metagenomic sequences. A novel software implementation written in C++ performs classification faster than the existing Markovian metagenomic classifiers and can therefore be used as a standalone classifier or in conjunction with existing taxonomic classifiers for more robust classification of metagenomic sequences. Availability and implementation The software has been made available at https://github.com/djburks/SMM. Contact [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (13) ◽  
pp. 2208-2215 ◽  
Author(s):  
Ioannis A Tamposis ◽  
Konstantinos D Tsirigos ◽  
Margarita C Theodoropoulou ◽  
Panagiota I Kontou ◽  
Pantelis G Bagos

Abstract Motivation Hidden Markov Models (HMMs) are probabilistic models widely used in applications in computational sequence analysis. HMMs are basically unsupervised models. However, in the most important applications, they are trained in a supervised manner. Training examples accompanied by labels corresponding to different classes are given as input and the set of parameters that maximize the joint probability of sequences and labels is estimated. A main problem with this approach is that, in the majority of the cases, labels are hard to find and thus the amount of training data is limited. On the other hand, there are plenty of unclassified (unlabeled) sequences deposited in the public databases that could potentially contribute to the training procedure. This approach is called semi-supervised learning and could be very helpful in many applications. Results We propose here, a method for semi-supervised learning of HMMs that can incorporate labeled, unlabeled and partially labeled data in a straightforward manner. The algorithm is based on a variant of the Expectation-Maximization (EM) algorithm, where the missing labels of the unlabeled or partially labeled data are considered as the missing data. We apply the algorithm to several biological problems, namely, for the prediction of transmembrane protein topology for alpha-helical and beta-barrel membrane proteins and for the prediction of archaeal signal peptides. The results are very promising, since the algorithms presented here can significantly improve the prediction performance of even the top-scoring classifiers. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Lekha Patel ◽  
David Williamson ◽  
Dylan M Owen ◽  
Edward A K Cohen

Abstract Motivation Many recent advancements in single-molecule localization microscopy exploit the stochastic photoswitching of fluorophores to reveal complex cellular structures beyond the classical diffraction limit. However, this same stochasticity makes counting the number of molecules to high precision extremely challenging, preventing key insight into the cellular structures and processes under observation. Results Modelling the photoswitching behaviour of a fluorophore as an unobserved continuous time Markov process transitioning between a single fluorescent and multiple dark states, and fully mitigating for missed blinks and false positives, we present a method for computing the exact probability distribution for the number of observed localizations from a single photoswitching fluorophore. This is then extended to provide the probability distribution for the number of localizations in a direct stochastic optical reconstruction microscopy experiment involving an arbitrary number of molecules. We demonstrate that when training data are available to estimate photoswitching rates, the unknown number of molecules can be accurately recovered from the posterior mode of the number of molecules given the number of localizations. Finally, we demonstrate the method on experimental data by quantifying the number of adapter protein linker for activation of T cells on the cell surface of the T-cell immunological synapse. Availability and implementation Software and data available at https://github.com/lp1611/mol_count_dstorm. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Sayoni Das ◽  
Harry M Scholes ◽  
Neeladri Sen ◽  
Christine Orengo

Abstract Motivation Identification of functional sites in proteins is essential for functional characterization, variant interpretation and drug design. Several methods are available for predicting either a generic functional site, or specific types of functional site. Here, we present FunSite, a machine learning predictor that identifies catalytic, ligand-binding and protein–protein interaction functional sites using features derived from protein sequence and structure, and evolutionary data from CATH functional families (FunFams). Results FunSite’s prediction performance was rigorously benchmarked using cross-validation and a holdout dataset. FunSite outperformed other publicly available functional site prediction methods. We show that conserved residues in FunFams are enriched in functional sites. We found FunSite’s performance depends greatly on the quality of functional site annotations and the information content of FunFams in the training data. Finally, we analyze which structural and evolutionary features are most predictive for functional sites. Availabilityand implementation https://github.com/UCL/cath-funsite-predictor. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


Animals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 771
Author(s):  
Toshiya Arakawa

Mammalian behavior is typically monitored by observation. However, direct observation requires a substantial amount of effort and time, if the number of mammals to be observed is sufficiently large or if the observation is conducted for a prolonged period. In this study, machine learning methods as hidden Markov models (HMMs), random forests, support vector machines (SVMs), and neural networks, were applied to detect and estimate whether a goat is in estrus based on the goat’s behavior; thus, the adequacy of the method was verified. Goat’s tracking data was obtained using a video tracking system and used to estimate whether they, which are in “estrus” or “non-estrus”, were in either states: “approaching the male”, or “standing near the male”. Totally, the PC of random forest seems to be the highest. However, The percentage concordance (PC) value besides the goats whose data were used for training data sets is relatively low. It is suggested that random forest tend to over-fit to training data. Besides random forest, the PC of HMMs and SVMs is high. However, considering the calculation time and HMM’s advantage in that it is a time series model, HMM is better method. The PC of neural network is totally low, however, if the more goat’s data were acquired, neural network would be an adequate method for estimation.


2021 ◽  
pp. 2-11
Author(s):  
David Aufreiter ◽  
Doris Ehrlinger ◽  
Christian Stadlmann ◽  
Margarethe Uberwimmer ◽  
Anna Biedersberger ◽  
...  

On the servitization journey, manufacturing companies complement their offerings with new industrial and knowledge-based services, which causes challenges of uncertainty and risk. In addition to the required adjustment of internal factors, the international selling of services is a major challenge. This paper presents the initial results of an international research project aimed at assisting advanced manufacturers in making decisions about exporting their service offerings to foreign markets. In the frame of this project, a tool is developed to support managers in their service export decisions through the automated generation of market information based on Natural Language Processing and Machine Learning. The paper presents a roadmap for progressing towards an Artificial Intelligence-based market information solution. It describes the research process steps of analyzing problem statements of relevant industry partners, selecting target countries and markets, defining parameters for the scope of the tool, classifying different service offerings and their components into categories and developing annotation scheme for generating reliable and focused training data for the Artificial Intelligence solution. This paper demonstrates good practices in essential steps and highlights common pitfalls to avoid for researcher and managers working on future research projects supported by Artificial Intelligence. In the end, the paper aims at contributing to support and motivate researcher and manager to discover AI application and research opportunities within the servitization field.


2018 ◽  
Vol 35 (15) ◽  
pp. 2535-2544 ◽  
Author(s):  
Dipan Shaw ◽  
Hao Chen ◽  
Tao Jiang

AbstractMotivationIsoforms are mRNAs produced from the same gene locus by alternative splicing and may have different functions. Although gene functions have been studied extensively, little is known about the specific functions of isoforms. Recently, some computational approaches based on multiple instance learning have been proposed to predict isoform functions from annotated gene functions and expression data, but their performance is far from being desirable primarily due to the lack of labeled training data. To improve the performance on this problem, we propose a novel deep learning method, DeepIsoFun, that combines multiple instance learning with domain adaptation. The latter technique helps to transfer the knowledge of gene functions to the prediction of isoform functions and provides additional labeled training data. Our model is trained on a deep neural network architecture so that it can adapt to different expression distributions associated with different gene ontology terms.ResultsWe evaluated the performance of DeepIsoFun on three expression datasets of human and mouse collected from SRA studies at different times. On each dataset, DeepIsoFun performed significantly better than the existing methods. In terms of area under the receiver operating characteristics curve, our method acquired at least 26% improvement and in terms of area under the precision-recall curve, it acquired at least 10% improvement over the state-of-the-art methods. In addition, we also study the divergence of the functions predicted by our method for isoforms from the same gene and the overall correlation between expression similarity and the similarity of predicted functions.Availability and implementationhttps://github.com/dls03/DeepIsoFun/Supplementary informationSupplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document