scholarly journals SimRVSequences: an R package to simulate genetic sequence data for pedigrees

2019 ◽  
Vol 36 (7) ◽  
pp. 2295-2297
Author(s):  
Christina Nieuwoudt ◽  
Angela Brooks-Wilson ◽  
Jinko Graham

Abstract Summary We present the R package SimRVSequences to simulate sequence data for pedigrees. SimRVSequences allows for simulations of large numbers of single-nucleotide variants (SNVs) and scales well with increasing numbers of pedigrees. Users provide a sample of pedigrees and SNV data from a sample of unrelated individuals. Availability and implementation SimRVSequences is publicly-available on CRAN https://cran.r-project.org/web/packages/SimRVSequences/. Supplementary information Supplementary data are available at Bioinformatics online.

2019 ◽  
Vol 35 (21) ◽  
pp. 4405-4407 ◽  
Author(s):  
Steven Monger ◽  
Michael Troup ◽  
Eddie Ip ◽  
Sally L Dunwoodie ◽  
Eleni Giannoulatou

Abstract Motivation In silico prediction tools are essential for identifying variants which create or disrupt cis-splicing motifs. However, there are limited options for genome-scale discovery of splice-altering variants. Results We have developed Spliceogen, a highly scalable pipeline integrating predictions from some of the individually best performing models for splice motif prediction: MaxEntScan, GeneSplicer, ESRseq and Branchpointer. Availability and implementation Spliceogen is available as a command line tool which accepts VCF/BED inputs and handles both single nucleotide variants (SNVs) and indels (https://github.com/VCCRI/Spliceogen). SNV databases with prediction scores are also available, covering all possible SNVs at all genomic positions within all Gencode-annotated multi-exon transcripts. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (22) ◽  
pp. 4812-4814 ◽  
Author(s):  
Jan Grau ◽  
Martin Nettling ◽  
Jens Keilwagen

Abstract Summary Statistical dependencies are present in a variety of sequence data, but are not discernible from traditional sequence logos. Here, we present the R package DepLogo for visualizing inter-position dependencies in aligned sequence data as dependency logos. Dependency logos make dependency structures, which correspond to regular co-occurrences of symbols at dependent positions, visually perceptible. To this end, sequences are partitioned based on their symbols at highly dependent positions as measured by mutual information, and each partition obtains its own visual representation. We illustrate the utility of the DepLogo package in several use cases generating dependency logos from DNA, RNA and protein sequences. Availability and implementation The DepLogo R package is available from CRAN and its source code is available at https://github.com/Jstacs/DepLogo. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Charith B. Karunarathna ◽  
Jinko Graham

Abstract Background A perfect phylogeny is a rooted binary tree that recursively partitions sequences. The nested partitions of a perfect phylogeny provide insight into the pattern of ancestry of genetic sequence data. For example, sequences may cluster together in a partition indicating that they arise from a common ancestral haplotype. Results We present an R package to reconstruct the local perfect phylogenies underlying a sample of binary sequences. The package enables users to associate the reconstructed partitions with a user-defined partition. We describe and demonstrate the major functionality of the package. Conclusion The package should be of use to researchers seeking insight into the ancestral structure of their sequence data. The reconstructed partitions have many applications, including the mapping of trait-influencing variants.


2017 ◽  
Author(s):  
Zhun Miao ◽  
Ke Deng ◽  
Xiaowo Wang ◽  
Xuegong Zhang

AbstractSummaryThe excessive amount of zeros in single-cell RNA-seq data include “real” zeros due to the on-off nature of gene transcription in single cells and “dropout” zeros due to technical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect 3 types of DE genes in single-cell RNA-seq data with higher accuracy.Availability and ImplementationThe R package DEsingle is freely available at https://github.com/miaozhun/DEsingle and is under Bioconductor’s consideration [email protected] informationSupplementary data are available at bioRxiv online.


2019 ◽  
Vol 36 (8) ◽  
pp. 2587-2588 ◽  
Author(s):  
Christopher M Ward ◽  
Thu-Hien To ◽  
Stephen M Pederson

Abstract Motivation High throughput next generation sequencing (NGS) has become exceedingly cheap, facilitating studies to be undertaken containing large sample numbers. Quality control (QC) is an essential stage during analytic pipelines and the outputs of popular bioinformatics tools such as FastQC and Picard can provide information on individual samples. Although these tools provide considerable power when carrying out QC, large sample numbers can make inspection of all samples and identification of systemic bias a challenge. Results We present ngsReports, an R package designed for the management and visualization of NGS reports from within an R environment. The available methods allow direct import into R of FastQC reports along with outputs from other tools. Visualization can be carried out across many samples using default, highly customizable plots with options to perform hierarchical clustering to quickly identify outlier libraries. Moreover, these can be displayed in an interactive shiny app or HTML report for ease of analysis. Availability and implementation The ngsReports package is available on Bioconductor and the GUI shiny app is available at https://github.com/UofABioinformaticsHub/shinyNgsreports. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (11) ◽  
pp. 3516-3521 ◽  
Author(s):  
Lixiang Zhang ◽  
Lin Lin ◽  
Jia Li

Abstract Motivation Cluster analysis is widely used to identify interesting subgroups in biomedical data. Since true class labels are unknown in the unsupervised setting, it is challenging to validate any cluster obtained computationally, an important problem barely addressed by the research community. Results We have developed a toolkit called covering point set (CPS) analysis to quantify uncertainty at the levels of individual clusters and overall partitions. Functions have been developed to effectively visualize the inherent variation in any cluster for data of high dimension, and provide more comprehensive view on potentially interesting subgroups in the data. Applying to three usage scenarios for biomedical data, we demonstrate that CPS analysis is more effective for evaluating uncertainty of clusters comparing to state-of-the-art measurements. We also showcase how to use CPS analysis to select data generation technologies or visualization methods. Availability and implementation The method is implemented in an R package called OTclust, available on CRAN. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (3) ◽  
pp. 713-720 ◽  
Author(s):  
Mary A Wood ◽  
Austin Nguyen ◽  
Adam J Struck ◽  
Kyle Ellrott ◽  
Abhinav Nellore ◽  
...  

Abstract Motivation The vast majority of tools for neoepitope prediction from DNA sequencing of complementary tumor and normal patient samples do not consider germline context or the potential for the co-occurrence of two or more somatic variants on the same mRNA transcript. Without consideration of these phenomena, existing approaches are likely to produce both false-positive and false-negative results, resulting in an inaccurate and incomplete picture of the cancer neoepitope landscape. We developed neoepiscope chiefly to address this issue for single nucleotide variants (SNVs) and insertions/deletions (indels). Results Herein, we illustrate how germline and somatic variant phasing affects neoepitope prediction across multiple datasets. We estimate that up to ∼5% of neoepitopes arising from SNVs and indels may require variant phasing for their accurate assessment. neoepiscope is performant, flexible and supports several major histocompatibility complex binding affinity prediction tools. Availability and implementation neoepiscope is available on GitHub at https://github.com/pdxgx/neoepiscope under the MIT license. Scripts for reproducing results described in the text are available at https://github.com/pdxgx/neoepiscope-paper under the MIT license. Additional data from this study, including summaries of variant phasing incidence and benchmarking wallclock times, are available in Supplementary Files 1, 2 and 3. Supplementary File 1 contains Supplementary Table 1, Supplementary Figures 1 and 2, and descriptions of Supplementary Tables 2–8. Supplementary File 2 contains Supplementary Tables 2–6 and 8. Supplementary File 3 contains Supplementary Table 7. Raw sequencing data used for the analyses in this manuscript are available from the Sequence Read Archive under accessions PRJNA278450, PRJNA312948, PRJNA307199, PRJNA343789, PRJNA357321, PRJNA293912, PRJNA369259, PRJNA305077, PRJNA306070, PRJNA82745 and PRJNA324705; from the European Genome-phenome Archive under accessions EGAD00001004352 and EGAD00001002731; and by direct request to the authors. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (10) ◽  
pp. 1797-1798 ◽  
Author(s):  
Han Cao ◽  
Jiayu Zhou ◽  
Emanuel Schwarz

Abstract Motivation Multi-task learning (MTL) is a machine learning technique for simultaneous learning of multiple related classification or regression tasks. Despite its increasing popularity, MTL algorithms are currently not available in the widely used software environment R, creating a bottleneck for their application in biomedical research. Results We developed an efficient, easy-to-use R library for MTL (www.r-project.org) comprising 10 algorithms applicable for regression, classification, joint predictor selection, task clustering, low-rank learning and incorporation of biological networks. We demonstrate the utility of the algorithms using simulated data. Availability and implementation The RMTL package is an open source R package and is freely available at https://github.com/transbioZI/RMTL. RMTL will also be available on cran.r-project.org. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (7) ◽  
pp. 2291-2292 ◽  
Author(s):  
Saskia Freytag ◽  
Ryan Lister

Abstract Summary Due to the scale and sparsity of single-cell RNA-sequencing data, traditional plots can obscure vital information. Our R package schex overcomes this by implementing hexagonal binning, which has the additional advantages of improving speed and reducing storage for resulting plots. Availability and implementation schex is freely available from Bioconductor via http://bioconductor.org/packages/release/bioc/html/schex.html and its development version can be accessed on GitHub via https://github.com/SaskiaFreytag/schex. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 36 (9) ◽  
pp. 2665-2674
Author(s):  
Nicola Casiraghi ◽  
Francesco Orlando ◽  
Yari Ciani ◽  
Jenny Xiang ◽  
Andrea Sboner ◽  
...  

Abstract Motivation The use of liquid biopsies for cancer patients enables the non-invasive tracking of treatment response and tumor dynamics through single or serial blood drawn tests. Next-generation sequencing assays allow for the simultaneous interrogation of extended sets of somatic single-nucleotide variants (SNVs) in circulating cell-free DNA (cfDNA), a mixture of DNA molecules originating both from normal and tumor tissue cells. However, low circulating tumor DNA (ctDNA) fractions together with sequencing background noise and potential tumor heterogeneity challenge the ability to confidently call SNVs. Results We present a computational methodology, called Adaptive Base Error Model in Ultra-deep Sequencing data (ABEMUS), which combines platform-specific genetic knowledge and empirical signal to readily detect and quantify somatic SNVs in cfDNA. We tested the capability of our method to analyze data generated using different platforms with distinct sequencing error properties and we compared ABEMUS performances with other popular SNV callers on both synthetic and real cancer patients sequencing data. Results show that ABEMUS performs better in most of the tested conditions proving its reliability in calling low variant allele frequencies somatic SNVs in low ctDNA levels plasma samples. Availability and implementation ABEMUS is cross-platform and can be installed as R package. The source code is maintained on Github at http://github.com/cibiobcg/abemus, and it is also available at CRAN official R repository. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document