scholarly journals CPS analysis: self-contained validation of biomedical data clustering

2020 ◽  
Vol 36 (11) ◽  
pp. 3516-3521 ◽  
Author(s):  
Lixiang Zhang ◽  
Lin Lin ◽  
Jia Li

Abstract Motivation Cluster analysis is widely used to identify interesting subgroups in biomedical data. Since true class labels are unknown in the unsupervised setting, it is challenging to validate any cluster obtained computationally, an important problem barely addressed by the research community. Results We have developed a toolkit called covering point set (CPS) analysis to quantify uncertainty at the levels of individual clusters and overall partitions. Functions have been developed to effectively visualize the inherent variation in any cluster for data of high dimension, and provide more comprehensive view on potentially interesting subgroups in the data. Applying to three usage scenarios for biomedical data, we demonstrate that CPS analysis is more effective for evaluating uncertainty of clusters comparing to state-of-the-art measurements. We also showcase how to use CPS analysis to select data generation technologies or visualization methods. Availability and implementation The method is implemented in an R package called OTclust, available on CRAN. Contact [email protected] or [email protected] Supplementary information Supplementary data are available at Bioinformatics online.

2016 ◽  
Author(s):  
Søeren M. Karst ◽  
Rasmus H. Kirkegaard ◽  
Mads Albertsen

ABSTRACTSummaryRecovery of population genomes is becoming a standard analysis in metagenomics and a multitude of different approaches exists. However, the workflows are complex, requiring data generation, binning, validation and finishing to generate high quality population genome bins. In addition, several different approaches are often used on the same dataset as the optimal strategy to extract a specific population genome varies. Here we introduce mmgenome: a toolbox for reproducible genome extraction from metagenomes. At the core of mmgenome is an R package that facilitates effortless integration of different binning strategies by collecting information on scaffolds. Genome binning is facilitated through integrated tools that support effortless visualizations, validation and calculation of key statistics. Full reproducibility and transparency is obtained through Rmarkdown, whereby every step can be recreated.Availability and implementationThe binning framework of mmge-nome is implemented in R. Wrapper scripts for data generation and finishing is written in Perl. The mmgenome toolbox and associated step-by-step guides are available at http://madsal-bertsen.github.io/mmgenome/[email protected] informationSupplementary data are available at Bioinformatics online.


Author(s):  
Andrew E Teschendorff ◽  
Alok K Maity ◽  
Xue Hu ◽  
Chen Weiyan ◽  
Matthias Lechner

Abstract Motivation An important task in the analysis of single-cell RNA-Seq data is the estimation of differentiation potency, as this can help identify stem-or-multipotent cells in non-temporal studies or in tissues where differentiation hierarchies are not well established. A key challenge in the estimation of single-cell potency is the need for a fast and accurate algorithm, scalable to large scRNA-Seq studies profiling millions of cells. Results Here, we present a single-cell potency measure, called Correlation of Connectome and Transcriptome (CCAT), which can return accurate single-cell potency estimates of a million cells in minutes, a 100-fold improvement over current state-of-the-art methods. We benchmark CCAT against 8 other single-cell potency models and across 28 scRNA-Seq studies, encompassing over 2 million cells, demonstrating comparable accuracy than the current state-of-the-art, at a significantly reduced computational cost, and with increased robustness to dropouts. Availability and implementation CCAT is part of the SCENT R-package, freely available from https://github.com/aet21/SCENT. Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
Matteo Chiara ◽  
Federico Zambelli ◽  
Marco Antonio Tangaro ◽  
Pietro Mandreoli ◽  
David S Horner ◽  
...  

Abstract Summary While over 200 000 genomic sequences are currently available through dedicated repositories, ad hoc methods for the functional annotation of SARS-CoV-2 genomes do not harness all currently available resources for the annotation of functionally relevant genomic sites. Here, we present CorGAT, a novel tool for the functional annotation of SARS-CoV-2 genomic variants. By comparisons with other state of the art methods we demonstrate that, by providing a more comprehensive and rich annotation, our method can facilitate the identification of evolutionary patterns in the genome of SARS-CoV-2. Availabilityand implementation Galaxy   http://corgat.cloud.ba.infn.it/galaxy; software: https://github.com/matteo14c/CorGAT/tree/Revision_V1; docker: https://hub.docker.com/r/laniakeacloud/galaxy_corgat. Supplementary information Supplementary data are available at Bioinformatics online.


2017 ◽  
Author(s):  
Zhun Miao ◽  
Ke Deng ◽  
Xiaowo Wang ◽  
Xuegong Zhang

AbstractSummaryThe excessive amount of zeros in single-cell RNA-seq data include “real” zeros due to the on-off nature of gene transcription in single cells and “dropout” zeros due to technical reasons. Existing differential expression (DE) analysis methods cannot distinguish these two types of zeros. We developed an R package DEsingle which employed Zero-Inflated Negative Binomial model to estimate the proportion of real and dropout zeros and to define and detect 3 types of DE genes in single-cell RNA-seq data with higher accuracy.Availability and ImplementationThe R package DEsingle is freely available at https://github.com/miaozhun/DEsingle and is under Bioconductor’s consideration [email protected] informationSupplementary data are available at bioRxiv online.


2019 ◽  
Vol 36 (8) ◽  
pp. 2587-2588 ◽  
Author(s):  
Christopher M Ward ◽  
Thu-Hien To ◽  
Stephen M Pederson

Abstract Motivation High throughput next generation sequencing (NGS) has become exceedingly cheap, facilitating studies to be undertaken containing large sample numbers. Quality control (QC) is an essential stage during analytic pipelines and the outputs of popular bioinformatics tools such as FastQC and Picard can provide information on individual samples. Although these tools provide considerable power when carrying out QC, large sample numbers can make inspection of all samples and identification of systemic bias a challenge. Results We present ngsReports, an R package designed for the management and visualization of NGS reports from within an R environment. The available methods allow direct import into R of FastQC reports along with outputs from other tools. Visualization can be carried out across many samples using default, highly customizable plots with options to perform hierarchical clustering to quickly identify outlier libraries. Moreover, these can be displayed in an interactive shiny app or HTML report for ease of analysis. Availability and implementation The ngsReports package is available on Bioconductor and the GUI shiny app is available at https://github.com/UofABioinformaticsHub/shinyNgsreports. Supplementary information Supplementary data are available at Bioinformatics online.


2018 ◽  
Vol 35 (10) ◽  
pp. 1797-1798 ◽  
Author(s):  
Han Cao ◽  
Jiayu Zhou ◽  
Emanuel Schwarz

Abstract Motivation Multi-task learning (MTL) is a machine learning technique for simultaneous learning of multiple related classification or regression tasks. Despite its increasing popularity, MTL algorithms are currently not available in the widely used software environment R, creating a bottleneck for their application in biomedical research. Results We developed an efficient, easy-to-use R library for MTL (www.r-project.org) comprising 10 algorithms applicable for regression, classification, joint predictor selection, task clustering, low-rank learning and incorporation of biological networks. We demonstrate the utility of the algorithms using simulated data. Availability and implementation The RMTL package is an open source R package and is freely available at https://github.com/transbioZI/RMTL. RMTL will also be available on cran.r-project.org. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 36 (7) ◽  
pp. 2291-2292 ◽  
Author(s):  
Saskia Freytag ◽  
Ryan Lister

Abstract Summary Due to the scale and sparsity of single-cell RNA-sequencing data, traditional plots can obscure vital information. Our R package schex overcomes this by implementing hexagonal binning, which has the additional advantages of improving speed and reducing storage for resulting plots. Availability and implementation schex is freely available from Bioconductor via http://bioconductor.org/packages/release/bioc/html/schex.html and its development version can be accessed on GitHub via https://github.com/SaskiaFreytag/schex. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (18) ◽  
pp. 3527-3529 ◽  
Author(s):  
David Aparício ◽  
Pedro Ribeiro ◽  
Tijana Milenković ◽  
Fernando Silva

Abstract Motivation Network alignment (NA) finds conserved regions between two networks. NA methods optimize node conservation (NC) and edge conservation. Dynamic graphlet degree vectors are a state-of-the-art dynamic NC measure, used within the fastest and most accurate NA method for temporal networks: DynaWAVE. Here, we use graphlet-orbit transitions (GoTs), a different graphlet-based measure of temporal node similarity, as a new dynamic NC measure within DynaWAVE, resulting in GoT-WAVE. Results On synthetic networks, GoT-WAVE improves DynaWAVE’s accuracy by 30% and speed by 64%. On real networks, when optimizing only dynamic NC, the methods are complementary. Furthermore, only GoT-WAVE supports directed edges. Hence, GoT-WAVE is a promising new temporal NA algorithm, which efficiently optimizes dynamic NC. We provide a user-friendly user interface and source code for GoT-WAVE. Availability and implementation http://www.dcc.fc.up.pt/got-wave/ Supplementary information Supplementary data are available at Bioinformatics online.


Author(s):  
William La Cava ◽  
Heather Williams ◽  
Weixuan Fu ◽  
Steve Vitale ◽  
Durga Srivatsan ◽  
...  

Abstract Motivation Many researchers with domain expertise are unable to easily apply machine learning (ML) to their bioinformatics data due to a lack of ML and/or coding expertise. Methods that have been proposed thus far to automate ML mostly require programming experience as well as expert knowledge to tune and apply the algorithms correctly. Here, we study a method of automating biomedical data science using a web-based AI platform to recommend model choices and conduct experiments. We have two goals in mind: first, to make it easy to construct sophisticated models of biomedical processes; and second, to provide a fully automated AI agent that can choose and conduct promising experiments for the user, based on the user’s experiments as well as prior knowledge. To validate this framework, we conduct an experiment on 165 classification problems, comparing to state-of-the-art, automated approaches. Finally, we use this tool to develop predictive models of septic shock in critical care patients. Results We find that matrix factorization-based recommendation systems outperform metalearning methods for automating ML. This result mirrors the results of earlier recommender systems research in other domains. The proposed AI is competitive with state-of-the-art automated ML methods in terms of choosing optimal algorithm configurations for datasets. In our application to prediction of septic shock, the AI-driven analysis produces a competent ML model (AUROC 0.85±0.02) that performs on par with state-of-the-art deep learning results for this task, with much less computational effort. Availability and implementation PennAI is available free of charge and open-source. It is distributed under the GNU public license (GPL) version 3. Supplementary information Supplementary data are available at Bioinformatics online.


2019 ◽  
Vol 35 (20) ◽  
pp. 4190-4192 ◽  
Author(s):  
Vincenzo Belcastro ◽  
Stephane Cano ◽  
Diego Marescotti ◽  
Stefano Acali ◽  
Carine Poussin ◽  
...  

Abstract Summary GladiaTOX R package is an open-source, flexible solution to high-content screening data processing and reporting in biomedical research. GladiaTOX takes advantage of the ‘tcpl’ core functionalities and provides a number of extensions: it provides a web-service solution to fetch raw data; it computes severity scores and exports ToxPi formatted files; furthermore it contains a suite of functionalities to generate PDF reports for quality control and data processing. Availability and implementation GladiaTOX R package (bioconductor). Also available via: git clone https://github.com/philipmorrisintl/GladiaTOX.git. Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document