Characterization of Cultured Adult Corturnix japonica Testicular Germ Stem Cells Using Seven Stem Cell Markers.

2010 ◽  
Vol 83 (Suppl_1) ◽  
pp. 713-713
Author(s):  
Thomas Jensen ◽  
Matthew Poling ◽  
Suellen Charter ◽  
Barbara Durrant
2006 ◽  
Vol 184 (3-4) ◽  
pp. 105-116 ◽  
Author(s):  
Irina Kerkis ◽  
Alexandre Kerkis ◽  
Dmitri Dozortsev ◽  
Gaëlle Chopin Stukart-Parsons ◽  
Sílvia Maria Gomes Massironi ◽  
...  

2010 ◽  
Vol 289 (2) ◽  
pp. 208-216 ◽  
Author(s):  
Shaker A. Mousa ◽  
Thangirala Sudha ◽  
Evgeny Dyskin ◽  
Usawadee Dier ◽  
Christine Gallati ◽  
...  

1996 ◽  
Vol 91 (2) ◽  
pp. 141-146 ◽  
Author(s):  
P. H. Jones

1. The keratinocytes in human epidermis are constantly turned over and replaced by a population of stem cells located in the basal epidermal layer. Until recently there were no markers allowing the isolation of viable epidermal stem cells. However, it has now been shown that epidermal stem cells can be isolated both in vitro and direct from the epidermis as they express high levels of functional β1 integrin family receptors for extracellular matrix proteins. 2. The evidence for integrins as stem cell markers and the insights that have been gained into stem cell behaviour are reviewed.


Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1134
Author(s):  
Julia I. Khorolskaya ◽  
Daria A. Perepletchikova ◽  
Daniel V. Kachkin ◽  
Kirill E. Zhurenkov ◽  
Elga I. Alexander-Sinkler ◽  
...  

The development of cell-based approaches to the treatment of various cornea pathologies, including limbal stem cell deficiency (LSCD), is an area of current interest in regenerative biomedicine. In this context, the shortage of donor material is urgent, and limbal mesenchymal stem cells (L-MSCs) may become a promising cell source for the development of these novel approaches, being established mainly within the rabbit model. In this study, we obtained and characterized rabbit L-MSCs and modified them with lentiviral transduction to express the green fluorescent protein EGFP (L-MSCs-EGFP). L-MSCs and L-MSCs-EGFP express not only stem cell markers specific for mesenchymal stem cells but also ABCG2, ABCB5, ALDH3A1, PAX6, and p63a specific for limbal epithelial stem cells (LESCs), as well as various cytokeratins (3/12, 15, 19). L-MSCs-EGFP have been proven to differentiate into adipogenic, osteogenic, and chondrogenic directions, as well as to transdifferentiate into epithelial cells. The possibility of using L-MSCs-EGFP to study the biocompatibility of various scaffolds developed to treat corneal pathologies was demonstrated. L-MSCs-EGFP may become a useful tool for studying regenerative processes occurring during the treatment of various corneal pathologies, including LSCD, with the use of cell-based technologies.


2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S175-S175
Author(s):  
X R Wu ◽  
C Zhou ◽  
H S Liu ◽  
L Xuan-hui ◽  
T Hu ◽  
...  

Abstract Background The application of stem cell therapy in the treatment of inflammatory bowel diseases (IBD) is limited because of the invasive approaches of stem cells. Urine-derived stem cells (USCs) were recently shown to have regenerative properties, which can be harvested in a safe, low-cost and non-invasive way. Methods Human USC were isolated and expanded from the urine of healthy male adult volunteers (n = 3, age arrange 24–30 years old). USC were characterised by cell surface marker expression profile and multipotent differentiation. In vivo therapeutic value of USC was assessed using murine colitis chronic model induced by dextran sulphate sodium (DSS). Results USC were positive for mesenchymal stem cell markers but were negative for hematopoietic stem cell markers. These cells differentiated into osteo-, adipo- and chondro-genic cell lineages. Systemic administration of USC significantly ameliorated the clinical and histopathological severity of colitis and increased the survival rate in chronic murine colitis model. Conclusion This study demonstrated that implantation of USC reduces inflammation in IBD rodent model, indicating that USC therapy serves as a potential cell-based therapeutic candidate for IBD.


Sign in / Sign up

Export Citation Format

Share Document