scholarly journals Effects of volatile anaesthetics on spontaneous action potential firing of cerebellar Purkinje cells in vitro do not follow the Meyer-Overton rule

1997 ◽  
Vol 79 (5) ◽  
pp. 617-624 ◽  
Author(s):  
B Antkowiak ◽  
H Hentschke ◽  
K Kirschfeld
2004 ◽  
Vol 101 (5) ◽  
pp. 1167-1176 ◽  
Author(s):  
Christian Grasshoff ◽  
Bernd Antkowiak

Background The capacity of general anesthetics to produce immobility is primarily spinally mediated. Recently, compelling evidence has been provided that the spinal actions of propofol involve gamma-aminobutyric acid type A (GABAA) receptors, whereas the contribution of glycine receptors remains uncertain. The relevant molecular targets of the commonly used volatile anesthetic sevoflurane in the spinal cord are largely unknown, but indirect evidence suggests a mechanism of action distinct from propofol. Methods The effects of sevoflurane and propofol on spontaneous action potential firing were investigated by extracellular voltage recordings from ventral horn interneurons in cultured spinal cord tissue slices obtained from embryonic rats (embryonic days 14-15). Results Propofol and sevoflurane reduced spontaneous action potential firing of neurons. Concentrations causing half-maximal effects (0.11 microm propofol, 0.11 mm sevoflurane) were lower than the median effective concentration immobility (1-1.5 microm propofol, 0.35 mm sevoflurane). At higher concentrations, complete inhibition of action potential activity was observed with sevoflurane but not with propofol. Effects of sevoflurane were mediated predominantly by glycine receptors (45%) and GABAA receptors (38%), whereas propofol acted almost exclusively via GABAA receptors (96%). Conclusions The authors' results suggest that glycine and GABAA receptors are the most important molecular targets mediating depressant effects of sevoflurane in the spinal cord. They provide evidence that sevoflurane causes immobility by a mechanism distinct from the actions of the intravenous anesthetic propofol. The finding that propofol acts exclusively via GABAA receptors can explain its limited capacity to depress spinal neurons in the authors' study.


2008 ◽  
Vol 99 (2) ◽  
pp. 976-988 ◽  
Author(s):  
Vasu Sheeba ◽  
Huaiyu Gu ◽  
Vijay K. Sharma ◽  
Diane K. O'Dowd ◽  
Todd C. Holmes

The ventral lateral neurons (LNvs) of adult Drosophila brain express oscillating clock proteins and regulate circadian behavior. Whole cell current-clamp recordings of large LNvs in freshly dissected Drosophila whole brain preparations reveal two spontaneous activity patterns that correlate with two underlying patterns of oscillating membrane potential: tonic and burst firing of sodium-dependent action potentials. Resting membrane potential and spontaneous action potential firing are rapidly and reversibly regulated by acute changes in light intensity. The LNv electrophysiological light response is attenuated, but not abolished, in cry b mutant flies hypomorphic for the cell-autonomous light-sensing protein CRYPTOCHROME. The electrical activity of the large LNv is circadian regulated, as shown by significantly higher resting membrane potential and frequency of spontaneous action potential firing rate and burst firing pattern during circadian subjective day relative to subjective night. The circadian regulation of membrane potential, spontaneous action potential firing frequency, and pattern of Drosophila large LNvs closely resemble mammalian circadian neuron electrical characteristics, suggesting a general evolutionary conservation of both physiological and molecular oscillator mechanisms in pacemaker neurons.


2007 ◽  
Vol 106 (6) ◽  
pp. 1147-1155 ◽  
Author(s):  
Christian Grasshoff ◽  
Berthold Drexler ◽  
Harald Hentschke ◽  
Horst Thiermann ◽  
Bernd Antkowiak

Background Victims of organophosphate intoxication with cholinergic crisis may have need for sedation and anesthesia, but little is known about how anesthetics work in these patients. Recent studies suggest that cholinergic stimulation impairs gamma-aminobutyric acid type A (GABAA) receptor function. Because GABAA receptors are major targets of general anesthetics, the authors investigated interactions between acetylcholine and sevoflurane in spinal and cortical networks. Methods Cultured spinal and cortical tissue slices were obtained from embryonic and newborn mice. Drug effects were assessed by extracellular voltage recordings of spontaneous action potential activity. Results Sevoflurane caused a concentration-dependent decrease in spontaneous action potential firing in spinal (EC50=0.17+/-0.02 mM) and cortical (EC50=0.29+/-0.01 mM) slices. Acetylcholine elevated neuronal excitation in both preparations and diminished the potency of sevoflurane in reducing action potential firing in cortical but not in spinal slices. This brain region-specific decrease in sevoflurane potency was mimicked by the specific GABAA receptor antagonist bicuculline, suggesting that (1) GABAA receptors are major molecular targets for sevoflurane in the cortex but not in the spinal cord and (2) acetylcholine impairs the efficacy of GABAA receptor-mediated inhibition. The latter hypothesis was supported by the finding that acetylcholine reduced the potency of etomidate in depressing cortical and spinal neurons. Conclusions The authors raise the question whether cholinergic overstimulation decreases the efficacy of GABAA receptor function in patients with organophosphate intoxication, thereby compromising anesthetic effects that are mediated predominantly via these receptors such as sedation and hypnosis.


1997 ◽  
Vol 77 (5) ◽  
pp. 2525-2538 ◽  
Author(s):  
Bernd Antkowiak ◽  
Detlef Heck

Antkowiak, Bernd and Detlef Heck. Effects of the volatileanesthetic enflurane on spontaneous discharge rate and GABAA-mediated inhibition of Purkinje cells in rat cerebellar slices. J. Neurophysiol. 77: 2525–2538, 1997. The effects of the volatile anesthetic enflurane on the spontaneous action potential firing and on γ-aminobutyric acid-A (GABAA)-mediated synaptic inhibition of Purkinje cells were investigated in sagittal cerebellar slices. The anesthetic shifted the discharge patterns from continuous spiking toward burst firing and decreased the frequency of extracellularly recorded spontaneous action potentials in a concentration-dependent manner. Half-maximal reduction was observed at a concentration corresponding to 2 MAC (1 MAC induces general anesthesia in 50% of patients and rats). When the GABAA antagonist bicuculline was present, 2 MAC enflurane reduced action potential firing only by 13 ± 8% (mean ± SE). In further experiments, inhibitory postsynaptic currents (IPSCs) were monitored in the whole cell patch-clamp configuration from cells voltage clamped close to −80 mV. At 1 MAC, enflurane attenuated the mean amplitude of IPSCs by 54 ± 3% while simultaneously prolonging the time courses of monoexponential current decays by 413 ± 69%. These effects were similar when presynaptic action potentials were suppressed by 1 μM tetrodotoxin. At 1–2 MAC, enflurane increased GABAA-mediated inhibition of Purkinje cells by 97 ± 20% to 159 ± 38%. During current-clamp recordings, the anesthetic (2 MAC) hyperpolarized the membrane potential by 5.2 ± 1.1 mV in the absence, but only by 1.6 ± 1.2 mV in the presence, of bicuculline. These results suggest that enflurane-induced membrane hyperpolarizations, as well as the reduction of spike rates, were partly caused by an increase in synaptic inhibition. Induction of burst firing was related to other actions of the anesthetic, probably an accelerated activation of an inwardly directed cationic current and a depression of spike afterhyperpolarizations.


1998 ◽  
Vol 88 (6) ◽  
pp. 1592-1605 ◽  
Author(s):  
Bernd Antkowiak ◽  
Charlotte Helfrich-Forster

Background Volatile general anesthetics depress neuronal activity in the mammalian central nervous system and enhance inhibitory Cl- currents flowing across the gamma-aminobutyric acid A (GABA(A)) receptor-ion channel complex. The extent to which an increase in GABA(A)-mediated synaptic inhibition contributes to the decrease in neuronal firing must be determined, because many further effects of these agents have been reported on the molecular level. Methods The actions of halothane, isoflurane, and enflurane on the firing patterns of single neurons were investigated by extracellular recordings in organotypic slice cultures derived from the rat neocortex. Results Volatile anesthetics depressed spontaneous action potential firing of neocortical neurons in a concentration-dependent manner. The estimated median effective concentration (EC50) values were about one half the EC50 values for general anesthesia. In the presence of the GABA(A) antagonist bicuculline (20 microM), the effectiveness of halothane, isoflurane, and enflurane in reducing the discharge rates were diminished by 48-65%, indicating that these drugs act via the GABA(A) receptor. Conclusions Together with recent investigations, our results provide evidence that halothane, isoflurane, and enflurane reduced spontaneous action potential firing of neocortical neurons in cultured brain slices mainly by increasing GABA(A)-mediated synaptic inhibition. At concentrations, approximately one half the EC50 for general anesthesia, volatile anesthetics increased overall GABA(A)-mediated synaptic inhibition about twofold, thus decreasing spontaneous action potential firing by half.


Author(s):  
Vincenzo Crunelli ◽  
Adam C. Errington ◽  
Stuart W. Hughes ◽  
Tibor I. Tóth

During non-rapid eye movement sleep and certain types of anaesthesia, neurons in the neocortex and thalamus exhibit a distinctive slow (<1 Hz) oscillation that consists of alternating UP and DOWN membrane potential states and which correlates with a pronounced slow (<1 Hz) rhythm in the electroencephalogram. While several studies have claimed that the slow oscillation is generated exclusively in neocortical networks and then transmitted to other brain areas, substantial evidence exists to suggest that the full expression of the slow oscillation in an intact thalamocortical (TC) network requires the balanced interaction of oscillator systems in both the neocortex and thalamus. Within such a scenario, we have previously argued that the powerful low-threshold Ca 2+ potential (LTCP)-mediated burst of action potentials that initiates the UP states in individual TC neurons may be a vital signal for instigating UP states in related cortical areas. To investigate these issues we constructed a computational model of the TC network which encompasses the important known aspects of the slow oscillation that have been garnered from earlier in vivo and in vitro experiments. Using this model we confirm that the overall expression of the slow oscillation is intricately reliant on intact connections between the thalamus and the cortex. In particular, we demonstrate that UP state-related LTCP-mediated bursts in TC neurons are proficient in triggering synchronous UP states in cortical networks, thereby bringing about a synchronous slow oscillation in the whole network. The importance of LTCP-mediated action potential bursts in the slow oscillation is also underlined by the observation that their associated dendritic Ca 2+ signals are the only ones that inform corticothalamic synapses of the TC neuron output, since they, but not those elicited by tonic action potential firing, reach the distal dendritic sites where these synapses are located.


2012 ◽  
Vol 302 (7) ◽  
pp. G740-G747 ◽  
Author(s):  
Galya R. Abdrakhmanova ◽  
Minho Kang ◽  
M. Imad Damaj ◽  
Hamid I. Akbarali

Recently, we reported that nicotine in vitro at a low 1-μM concentration suppresses hyperexcitability of colonic dorsal root ganglia (DRG; L1-L2) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation ( 1 ). Here we show that multiple action potential firing in colonic DRG neurons persisted at least for 3 wk post-DSS administration while the inflammatory signs were diminished. Similar to that in DSS-induced acute colitis, bath-applied nicotine (1 μM) gradually reduced regenerative multiple-spike action potentials in colonic DRG neurons to a single action potential in 3 wk post-DSS neurons. Nicotine (1 μM) shifted the activation curve for tetrodotoxin (TTX)-resistant sodium currents in inflamed colonic DRG neurons (voltage of half-activation changed from −37 to −32 mV) but did not affect TTX-sensitive currents in control colonic DRG neurons. Further, subcutaneous nicotine administration (2 mg/kg b.i.d.) in DSS-treated C57Bl/J6 male mice resulted in suppression of hyperexcitability of colonic DRG (L1-L2) neurons and the number of abdominal constrictions in response to intraperitoneal injection of 0.6% acetic acid. Collectively, the data suggest that neuronal nicotinic acetylcholine receptor-mediated suppression of hyperexcitability of colonic DRG neurons attenuates reduction of visceral hypersensitivity in DSS mouse model of colonic inflammation.


Sign in / Sign up

Export Citation Format

Share Document