scholarly journals Metabolic activity of cerebellar and basal ganglia-thalamic neurons is reduced in parkinsonism

Brain ◽  
2006 ◽  
Vol 130 (1) ◽  
pp. 265-275 ◽  
Author(s):  
A.-S. Rolland ◽  
M.-T. Herrero ◽  
V. Garcia-Martinez ◽  
M. Ruberg ◽  
E. C. Hirsch ◽  
...  
Neuroscience ◽  
1996 ◽  
Vol 71 (4) ◽  
pp. 903-912 ◽  
Author(s):  
M. Vila ◽  
R. Levy ◽  
M.-T. Herrero ◽  
B. Faucheux ◽  
J.A. Obeso ◽  
...  

2019 ◽  
Author(s):  
Md Ali Azam ◽  
Deepak Kumbhare ◽  
Ravi Hadimani ◽  
Jamie Toms ◽  
Mark S. Baron ◽  
...  

AbstractA modified computational model of pallidal receiving ventral oral posterior (Vop) thalamocortical motor relay neurons was adapted based on in vivo observations in our rodent model. The model accounts for different input neuronal firing patterns in the primary motor output nucleus of basal ganglia, the globus pallidus interna (GPi) and subsequently generate Vop outputs as observed in vivo under different conditions. Hyperpolarizing input de-inactivates its T-type calcium channel and sets the thalamic neurons in the preferable burst firing mode over a tonic mode and induces low threshold spikes (LTS). In the hyperpolarized state, both spontaneously and in response to excitatory (e.g. corticothalamic) inputs, burst spiking occurs on the crest of the LTS. By selecting and determining the timing and extent of opening of thalamic T-type calcium channels via GABAergic hyperpolarizing input, the GPi precisely regulates Vop-cortical burst motor signaling. Different combinations of tonic, burst, irregular tonic and irregular burst inputs from GPi were used to verify our model. In vivo data obtained from recordings in the entopedunucular nucleus (EP; rodent equivalent of GPi) from resting head restrained healthy and dystonic rats were used to simulate the influences of different inputs from GPi. In all cases, GPi neuronal firing patterns are demonstrated to act as a firing mode selector for thalamic Vop neurons.


2012 ◽  
Vol 108 (5) ◽  
pp. 1403-1429 ◽  
Author(s):  
Jesse H. Goldberg ◽  
Michael A. Farries ◽  
Michale S. Fee

The basal ganglia-recipient thalamus receives inhibitory inputs from the pallidum and excitatory inputs from cortex, but it is unclear how these inputs interact during behavior. We recorded simultaneously from thalamic neurons and their putative synaptically connected pallidal inputs in singing zebra finches. We find, first, that each pallidal spike produces an extremely brief (∼5 ms) pulse of inhibition that completely suppresses thalamic spiking. As a result, thalamic spikes are entrained to pallidal spikes with submillisecond precision. Second, we find that the number of thalamic spikes that discharge within a single pallidal interspike interval (ISI) depends linearly on the duration of that interval but does not depend on pallidal activity prior to the interval. In a detailed biophysical model, our results were not easily explained by the postinhibitory “rebound” mechanism previously observed in anesthetized birds and in brain slices, nor could most of our data be characterized as “gating” of excitatory transmission by inhibitory pallidal input. Instead, we propose a novel “entrainment” mechanism of pallidothalamic transmission that highlights the importance of an excitatory conductance that drives spiking, interacting with brief pulses of pallidal inhibition. Building on our recent finding that cortical inputs can drive syllable-locked rate modulations in thalamic neurons during singing, we report here that excitatory inputs affect thalamic spiking in two ways: by shortening the latency of a thalamic spike after a pallidal spike and by increasing thalamic firing rates within individual pallidal ISIs. We present a unifying biophysical model that can reproduce all known modes of pallidothalamic transmission—rebound, gating, and entrainment—depending on the amount of excitation the thalamic neuron receives.


2003 ◽  
Vol 13 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Wassilios Meissner ◽  
Sandra Dovero ◽  
Bernard Bioulac ◽  
Christian E. Gross ◽  
Erwan Bezard

Author(s):  
Laureline Logiaco ◽  
L.F. Abbott ◽  
Sean Escola

AbstractThe mechanisms by which neural circuits generate an extensible library of motor motifs and flexibly string them into arbitrary sequences are unclear. We developed a model in which inhibitory basal ganglia output neurons project to thalamic units that are themselves bidirectionally connected to a recurrent cortical network. During movement sequences, electrophysiological recordings of basal ganglia output neurons show sustained activity patterns that switch at the boundaries between motifs. Thus, we model these inhibitory patterns as silencing some thalamic neurons while leaving others disinhibited and free to interact with cortex during specific motifs. We show that a small number of disinhibited thalamic neurons can control cortical dynamics to generate specific motor output in a noise robust way. If the thalamic units associated with each motif are segregated, many motor outputs can be learned without interference and then combined in arbitrary orders for the flexible production of long and complex motor sequences.


Author(s):  
W. Kuenzig ◽  
M. Boublik ◽  
J.J. Kamm ◽  
J.J. Burns

Unlike a variety of other animal species, such as the rabbit, mouse or rat, the guinea pig has a relatively long gestation period and is a more fully developed animal at birth. Kuenzig et al. reported that drug metabolic activity which increases very slowly during fetal life, increases rapidly after birth. Hepatocytes of a 3-day old neonate metabolize drugs and reduce cytochrome P-450 at a rate comparable to that observed in the adult animal. Moreover the administration of drugs like phenobarbital to pregnant guinea pigs increases the microsomal mixed function oxidase activity already in the fetus.Drug metabolic activity is, generally, localized within the smooth endoplasmic reticulum (SER) of the hepatocyte.


Sign in / Sign up

Export Citation Format

Share Document