32P-HPLC suitable for characterization of DNA adducts formed in vitro by polycyclic aromatic hydrocarbons and derivatives

1995 ◽  
Vol 16 (1) ◽  
pp. 1-9 ◽  
Author(s):  
M. Zeisig ◽  
L. Möller
Breast Care ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. 316-318 ◽  
Author(s):  
Jessica Korsh ◽  
Allison Shen ◽  
Kristen Aliano ◽  
Thomas Davenport

Polycyclic aromatic hydrocarbons (PAHs) exist and persist in the atmosphere due to the incomplete combustion of fossil fuels, and are established human carcinogens. The influence of PAHs on the development of breast cancer, the most commonly diagnosed cancer in women worldwide, remains unclear. As established risk factors only account for approximately 41% of the breast cancer cases in the USA, researchers have sought to uncover environmental factors involved in breast cancer development. The breasts are particularly susceptible to aromatic carcinogenesis, and the implementation of biomarkers has provided promising insights regarding PAH-DNA adducts in breast cancer. The use of biomarkers measuring PAH-DNA adducts assesses exposure to eliminate the bias inherent in self-reporting measures in case-control studies investigating the link between PAHs and cancer. Adduct levels reflect exposure dose as well as how the body responds to this exposure, which is partially attributable to genetic variability. Evidence suggests that exposure to PAHs has a causational effect on breast cancer in humans, yet this interaction is not clearly understood. In vitro and animal-based studies have consistently revealed that exposure to PAHs deleteriously affects breast tissue, but there is no definitive link between these compounds and breast cancer.


1994 ◽  
Vol 6 (1-4) ◽  
pp. 87-93 ◽  
Author(s):  
Jan Szeliga ◽  
Bruce D. Hilton ◽  
Hongmee Lee ◽  
Ronald G. Harvey ◽  
Anthony Dipple

2021 ◽  
Author(s):  
Igor Burstyn ◽  
Geoffrey H. Donovan ◽  
Yvonne L. Michael ◽  
Sarah Jovan

Polycyclic aromatic hydrocarbons (PAHs) are a component of air pollutants that are costly to measure using traditional air-quality monitoring methods. We used an epiphytic bio-indicator (moss genus: Orthotrichum) to cost-effectively evaluate atmospheric deposition of PAHs in Portland, Oregon in May 2013. However, it is unclear if measurements derived from these bioindicators are good proxies for human exposure. To address this question, we simultaneously, measured PAH-DNA adducts in blood samples of non-smokers residing close to the sites of moss measurements. We accounted for individual determinants of PAH uptake that are not related to environmental air quality through questionnaires, e.g., wood fires, consumption of barbecued and fried meats. Correlation and linear regression (to control for confounders from the lifestyle factors) evaluated the associations. We did not observe evidence of an association between PAH levels in moss and PAH-DNA adducts in blood of nearby residents, but higher level of adduct were evident in those who used wood fire in their houses in the last 48 hours. It remains to be determined whether bio-indicators in moss can be used for human health risk assessment.


2021 ◽  
Vol 19 (3) ◽  
pp. 246-254
Author(s):  
Nur Zaida Zahari ◽  
◽  
Erma Hani Baharudzaman ◽  
Piakong Mohd Tuah ◽  
Fera Nony Cleophas ◽  
...  

Oil spills are one of the environmental pollutions that commonly occur along coastal areas. Tar-balls are one of the products that come from the oil spill pollution. In this study, tar-ball pollution was monitored at 10 points along the coastline of Marintaman Beach in Sipitang, Sabah, Malaysia. This research determined the physical characteristics, composition, and concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in tar-balls. The total number of tar-balls collected was 227 (n=227). The tar-balls were observed in various shapes and the sizes were recorded in the range of 0.1 cm to 6.9 cm. The composition and concentration of Polycyclic Aromatic Hydrocarbons (PAHs) in the outer and inner layer of tar-balls were determined. The results showed that the main Polycyclic Aromatic Hydrocarbons (PAHs) compounds were found in inner layers of the tar-balls with benzo (g,h,i) perylene (72.26 mg/kg), flourene (59.87 mg/kg), dibenzo (a,h) anthracene (44.48 mg/kg), indeno (1,2,3-c,d) pyrene (78.18 mg/kg), and benzo (e) fluoranthene (45.70 mg/kg), respectively. Further research was done with the bioaugmentation study of locally isolated beneficial microorganisms (LIBeM) consortium for treatment of tar-balls in an Aerated Static Pile (ASP) bioreactor system. The results showed that, after 84 days of treatment, this consortium, consisting of C. tropicalis-RETL-Cr1, C. violaceum-MAB-Cr1, and P. aeruginosa-BAS-Cr1, was able to degrade total petroleum hydrocarbon (TPH) by 84% as compared to natural attenuation (19%). The microbial population of this consortium during the biodegradation study is also discussed in this paper.


Sign in / Sign up

Export Citation Format

Share Document