Much of spontaneous mutagenesis in Escherichia coli is due to error-prone DNA repair: implications for spontaneous carcinogenesis

1981 ◽  
Vol 2 (9) ◽  
pp. 863-872 ◽  
Author(s):  
Neil J. Sargentini ◽  
Kendric C. Smith
Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1441-1451
Author(s):  
Johan G de Boer ◽  
Barry W Glickman

Abstract The lacI gene has been used extensively for the recovery and analysis of mutations in bacteria with various DNA repair backgrounds and after exposure to a wide variety of mutagens. This has resulted in a large database of information on mutational mechanisms and specificity of many mutagens, as well as the effect of DNA repair background on mutagenicity. Most importantly, knowledge about the mutational sensitivity of the lacI gene is now available, yielding information about mutable nucleotides. This popularity and available knowledge resulted in the use of the lacI gene in transgenic rodents for the study of mutagenesis in mammals, where it resides in ~40 repeated copies. As the number of sequenced mutations recovered from these animals increases, we are able to analyze the sites at which mutations have been recovered in great detail and to compare the recovered sites between bacteria and transgenic animals. The nucleotides that code for the DNA-binding domain are nearly saturated with base substitutions. Even after determining the sequences of ~10,000 mutations recovered from the animals, however, new sites and new changes are still being recovered. In addition, we compare the nature of deletion mutations between bacteria and animals. Based on the nature of deletions in the animals, we conclude that each deletion occurs in a single copy of the gene.


Microbiology ◽  
2005 ◽  
Vol 151 (3) ◽  
pp. 775-787 ◽  
Author(s):  
Hannes Nahrstedt ◽  
Christine Schröder ◽  
Friedhelm Meinhardt

Isolation and subsequent knockout of a recA-homologous gene in Bacillus megaterium DSM 319 resulted in a mutant displaying increased sensitivity to mitomycin C. However, this mutant did not exhibit UV hypersensitivity, a finding which eventually led to identification of a second functional recA gene. Evidence for recA duplicates was also obtained for two other B. megaterium strains. In agreement with potential DinR boxes located within their promoter regions, expression of both genes (recA1 and recA2) was found to be damage-inducible. Transcription from the recA2 promoter was significantly higher than that of recA1. Since a recA2 knockout could not be achieved, functional complementation studies were performed in Escherichia coli. Heterologous expression in a RecA null mutant resulted in increased survival after UV irradiation and mitomycin C treatment, proving both recA gene products to be functional in DNA repair. Thus, there is evidence for an SOS-like pathway in B. megaterium that differs from that of Bacillus subtilis.


2008 ◽  
Vol 190 (17) ◽  
pp. 5841-5854 ◽  
Author(s):  
Helen Ting ◽  
Elena A. Kouzminova ◽  
Andrei Kuzminov

ABSTRACT Synthetic lethality is inviability of a double-mutant combination of two fully viable single mutants, commonly interpreted as redundancy at an essential metabolic step. The dut-1 defect in Escherichia coli inactivates dUTPase, causing increased uracil incorporation in DNA and known synthetic lethalities [SL(dut) mutations]. According to the redundancy logic, most of these SL(dut) mutations should affect nucleotide metabolism. After a systematic search for SL(dut) mutants, we did identify a single defect in the DNA precursor metabolism, inactivating thymidine kinase (tdk), that confirmed the redundancy explanation of synthetic lethality. However, we found that the bulk of mutations interacting genetically with dut are in DNA repair, revealing layers of damage of increasing complexity that uracil-DNA incorporation sends through the chromosomal metabolism. Thus, we isolated mutants in functions involved in (i) uracil-DNA excision (ung, polA, and xthA); (ii) double-strand DNA break repair (recA, recBC, and ruvABC); and (iii) chromosomal-dimer resolution (xerC, xerD, and ftsK). These mutants in various DNA repair transactions cannot be redundant with dUTPase and instead reveal “defect-damage-repair” cycles linking unrelated metabolic pathways. In addition, two SL(dut) inserts (phoU and degP) identify functions that could act to support the weakened activity of the Dut-1 mutant enzyme, suggesting the “compensation” explanation for this synthetic lethality. We conclude that genetic interactions with dut can be explained by redundancy, by defect-damage-repair cycles, or as compensation.


2008 ◽  
Vol 2008 ◽  
pp. 1-11 ◽  
Author(s):  
Tatiana S. Piskunova ◽  
Maria N. Yurova ◽  
Anton I. Ovsyannikov ◽  
Anna V. Semenchenko ◽  
Mark A. Zabezhinski ◽  
...  

Genetic and biochemical studies have shown that PARP-1 and poly(ADP-ribosyl)ation play an important role in DNA repair, genomic stability, cell death, inflammation, telomere maintenance, and suppressing tumorigenesis, suggesting that the homeostasis of poly(ADP-ribosyl)ation and PARP-1 may also play an important role in aging. Here we show that PARP- mice exhibit a reduction of life span and a significant increase of population aging rate. Analysis of noninvasive parameters, including body weight gain, body temperature, estrous function, behavior, and a number of biochemical indices suggests the acceleration of biological aging in PARP- mice. The incidence of spontaneous tumors in both PARP- and PARP- groups is similar; however, malignant tumors including uterine tumors, lung adenocarcinomas and hepatocellular carcinomas, develop at a significantly higher frequency in PARP- mice than PARP- mice (72% and 49%, resp.; .05). In addition, spontaneous tumors appear earlier in PARP- mice compared to the wild type group. Histopathological studies revealed a wide spectrum of tumors in uterus, ovaries, liver, lungs, mammary gland, soft tissues, and lymphoid organs in both groups of the mice. These results demonstrate that inactivation of DNA repair gene PARP-1 in mice leads to acceleration of aging, shortened life span, and increased spontaneous carcinogenesis.


Sign in / Sign up

Export Citation Format

Share Document