scholarly journals Contextual and Spatial Associations Between Objects Interactively Modulate Visual Processing

2020 ◽  
Vol 30 (12) ◽  
pp. 6391-6404
Author(s):  
Genevieve L Quek ◽  
Marius V Peelen

Abstract Much of what we know about object recognition arises from the study of isolated objects. In the real world, however, we commonly encounter groups of contextually associated objects (e.g., teacup and saucer), often in stereotypical spatial configurations (e.g., teacup above saucer). Here we used electroencephalography to test whether identity-based associations between objects (e.g., teacup–saucer vs. teacup–stapler) are encoded jointly with their typical relative positioning (e.g., teacup above saucer vs. below saucer). Observers viewed a 2.5-Hz image stream of contextually associated object pairs intermixed with nonassociated pairs as every fourth image. The differential response to nonassociated pairs (measurable at 0.625 Hz in 28/37 participants) served as an index of contextual integration, reflecting the association of object identities in each pair. Over right occipitotemporal sites, this signal was larger for typically positioned object streams, indicating that spatial configuration facilitated the extraction of the objects’ contextual association. This high-level influence of spatial configuration on object identity integration arose ~ 320 ms post-stimulus onset, with lower-level perceptual grouping (shared with inverted displays) present at ~ 130 ms. These results demonstrate that contextual and spatial associations between objects interactively influence object processing. We interpret these findings as reflecting the high-level perceptual grouping of objects that frequently co-occur in highly stereotyped relative positions.

2020 ◽  
Author(s):  
Genevieve L. Quek ◽  
Marius V. Peelen

AbstractMuch of what we know about object recognition arises from the study of isolated objects. In the real world, however, we commonly encounter groups of contextually-associated objects (e.g., teacup, saucer), often in stereotypical spatial configurations (e.g., teacup above saucer). Here we used EEG to test whether identity-based associations between objects (e.g., teacup-saucer vs. teacup-stapler) are encoded jointly with their typical relative positioning (e.g., teacup above saucer vs. below saucer). Observers viewed a 2.5Hz image stream of contextually-associated object pairs intermixed with non-associated pairs as every fourth image. The differential response to non-associated pairs (measurable at 0.625Hz in 28/37 participants), served as an index of contextual integration, reflecting the association of object identities in each pair. Over right occipitotemporal sites, this signal was larger for typically-positioned object streams, indicating that spatial configuration facilitated the extraction of the objects’ contextual association. This high-level influence of spatial configuration on object identity integration arose ∼320ms post stimulus onset, with lower-level perceptual grouping (shared with inverted displays) present at ∼130ms. These results demonstrate that contextual and spatial associations between objects interactively influence object processing. We interpret these findings as reflecting the high-level perceptual grouping of objects that frequently co-occur in highly stereotyped relative positions.


2012 ◽  
Vol 24 (2) ◽  
pp. 521-529 ◽  
Author(s):  
Frank Oppermann ◽  
Uwe Hassler ◽  
Jörg D. Jescheniak ◽  
Thomas Gruber

The human cognitive system is highly efficient in extracting information from our visual environment. This efficiency is based on acquired knowledge that guides our attention toward relevant events and promotes the recognition of individual objects as they appear in visual scenes. The experience-based representation of such knowledge contains not only information about the individual objects but also about relations between them, such as the typical context in which individual objects co-occur. The present EEG study aimed at exploring the availability of such relational knowledge in the time course of visual scene processing, using oscillatory evoked gamma-band responses as a neural correlate for a currently activated cortical stimulus representation. Participants decided whether two simultaneously presented objects were conceptually coherent (e.g., mouse–cheese) or not (e.g., crown–mushroom). We obtained increased evoked gamma-band responses for coherent scenes compared with incoherent scenes beginning as early as 70 msec after stimulus onset within a distributed cortical network, including the right temporal, the right frontal, and the bilateral occipital cortex. This finding provides empirical evidence for the functional importance of evoked oscillatory activity in high-level vision beyond the visual cortex and, thus, gives new insights into the functional relevance of neuronal interactions. It also indicates the very early availability of experience-based knowledge that might be regarded as a fundamental mechanism for the rapid extraction of the gist of a scene.


2015 ◽  
Vol 282 (1799) ◽  
pp. 20142384 ◽  
Author(s):  
Aurore Avarguès-Weber ◽  
Adrian G. Dyer ◽  
Noha Ferrah ◽  
Martin Giurfa

Traditional models of insect vision have assumed that insects are only capable of low-level analysis of local cues and are incapable of global, holistic perception. However, recent studies on honeybee ( Apis mellifera ) vision have refuted this view by showing that this insect also processes complex visual information by using spatial configurations or relational rules. In the light of these findings, we asked whether bees prioritize global configurations or local cues by setting these two levels of image analysis in competition. We trained individual free-flying honeybees to discriminate hierarchical visual stimuli within a Y-maze and tested bees with novel stimuli in which local and/or global cues were manipulated. We demonstrate that even when local information is accessible, bees prefer global information, thus relying mainly on the object's spatial configuration rather than on elemental, local information. This preference can be reversed if bees are pre-trained to discriminate isolated local cues. In this case, bees prefer the hierarchical stimuli with the local elements previously primed even if they build an incorrect global configuration. Pre-training with local cues induces a generic attentional bias towards any local elements as local information is prioritized in the test, even if the local cues used in the test are different from the pre-trained ones. Our results thus underline the plasticity of visual processing in insects and provide new insights for the comparative analysis of visual recognition in humans and animals.


2018 ◽  
Author(s):  
Patrick Sadil ◽  
Kevin Potter ◽  
David E. Huber ◽  
Rosemary Cowell

Knowing the identity of an object can powerfully alter perception. Visual demonstrations of this – such as Gregory’s (1980) hidden Dalmatian – affirm the existence of both top-down and bottom-up processing. We consider a third processing pathway: lateral connections between the parts of an object. Lateral associations are assumed by theories of object processing and hierarchical theories of memory, but little evidence attests to them. If they exist, their effects should be observable even in the absence of object identity knowledge. We employed Continuous Flash Suppression (CFS) while participants studied object images, such that visual details were learned without explicit object identification. At test, lateral associations were probed using a part-to-part matching task. We also tested whether part-whole links were facilitated by prior study using a part-naming task, and included another study condition (“Word”), in which participants saw only an object’s written name. The key question was whether CFS study (which provided visual information without identity) would better support part-to-part matching (via lateral associations) whereas Word study (which provided identity without the correct visual form) would better support part-naming (via top-down processing). The predicted dissociation was found, and confirmed by state-trace analyses. Thus, lateral part-to-part associations were learned and retrieved independently of object identity representations. This establishes novel links between perception and memory, demonstrating that (1) lateral associations at lower levels of the object identification hierarchy exist and contribute to object processing, and (2) these associations are learned via rapid, episodic-like mechanisms previously observed for the high-level, arbitrary relations comprising episodic memories.


2008 ◽  
Vol 20 (1) ◽  
pp. 36-48 ◽  
Author(s):  
H. Branch Coslett ◽  
Grace Lie

Information regarding object identity (“what”) and spatial location (“where/how to”) is largely segregated in visual processing. Under most circumstances, however, object identity and location are linked. We report data from a simultanagnosic patient (K.E.) with bilateral posterior parietal infarcts who was unable to “see” more than one object in an array despite relatively preserved object processing and normal preattentive processing. K.E. also demonstrated a finding that has not, to our knowledge, been reported: He was unable to report more than one attribute of a single object. For example, he was unable to name the color of the ink in which words were written despite naming the word correctly. Several experiments demonstrated, however, that perceptual attributes that he was unable to report influenced his performance. We suggest that binding of object identity and location is a limited-capacity operation that is essential for conscious awareness for which the posterior parietal lobe is crucial.


2017 ◽  
Author(s):  
B. B. Bankson ◽  
M.N. Hebart ◽  
I.I.A. Groen ◽  
C.I. Baker

AbstractVisual object representations are commonly thought to emerge rapidly, yet it has remained unclear to what extent early brain responses reflect purely low-level visual features of these objects and how strongly those features contribute to later categorical or conceptual representations. Here, we aimed to estimate a lower temporal bound for the emergence of conceptual representations by defining two criteria that characterize such representations: 1) conceptual object representations should generalize across different exemplars of the same object, and 2) these representations should reflect high-level behavioral judgments. To test these criteria, we compared magnetoencephalography (MEG) recordings between two groups of participants (n = 16 per group) exposed to different exemplar images of the same object concepts. Further, we disentangled low-level from high-level MEG responses by estimating the unique and shared contribution of models of behavioral judgments, semantics, and different layers of deep neural networks of visual object processing. We find that 1) both generalization across exemplars as well as generalization of object-related signals across time increase after 150 ms, peaking around 230 ms; 2) behavioral judgments explain the most unique variance in the response after 150 ms. Collectively, these results suggest a lower bound for the emergence of conceptual object representations around 150 ms following stimulus onset.


2014 ◽  
Vol 111 (10) ◽  
pp. E962-E971 ◽  
Author(s):  
Assaf Harel ◽  
Dwight J. Kravitz ◽  
Chris I. Baker

Perception reflects an integration of “bottom-up” (sensory-driven) and “top-down” (internally generated) signals. Although models of visual processing often emphasize the central role of feed-forward hierarchical processing, less is known about the impact of top-down signals on complex visual representations. Here, we investigated whether and how the observer’s goals modulate object processing across the cortex. We examined responses elicited by a diverse set of objects under six distinct tasks, focusing on either physical (e.g., color) or conceptual properties (e.g., man-made). Critically, the same stimuli were presented in all tasks, allowing us to investigate how task impacts the neural representations of identical visual input. We found that task has an extensive and differential impact on object processing across the cortex. First, we found task-dependent representations in the ventral temporal and prefrontal cortex. In particular, although object identity could be decoded from the multivoxel response within task, there was a significant reduction in decoding across tasks. In contrast, the early visual cortex evidenced equivalent decoding within and across tasks, indicating task-independent representations. Second, task information was pervasive and present from the earliest stages of object processing. However, although the responses of the ventral temporal, prefrontal, and parietal cortex enabled decoding of both the type of task (physical/conceptual) and the specific task (e.g., color), the early visual cortex was not sensitive to type of task and could only be used to decode individual physical tasks. Thus, object processing is highly influenced by the behavioral goal of the observer, highlighting how top-down signals constrain and inform the formation of visual representations.


2016 ◽  
Vol 114 (2) ◽  
pp. 388-393 ◽  
Author(s):  
Mark D. Vida ◽  
Adrian Nestor ◽  
David C. Plaut ◽  
Marlene Behrmann

Humans’ remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level “image-based” and higher level “identity-based” model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise.


1999 ◽  
Vol 11 (3) ◽  
pp. 300-311 ◽  
Author(s):  
Edmund T. Rolls ◽  
Martin J. Tovée ◽  
Stefano Panzeri

Backward masking can potentially provide evidence of the time needed for visual processing, a fundamental constraint that must be incorporated into computational models of vision. Although backward masking has been extensively used psychophysically, there is little direct evidence for the effects of visual masking on neuronal responses. To investigate the effects of a backward masking paradigm on the responses of neurons in the temporal visual cortex, we have shown that the response of the neurons is interrupted by the mask. Under conditions when humans can just identify the stimulus, with stimulus onset asynchronies (SOA) of 20 msec, neurons in macaques respond to their best stimulus for approximately 30 msec. We now quantify the information that is available from the responses of single neurons under backward masking conditions when two to six faces were shown. We show that the information available is greatly decreased as the mask is brought closer to the stimulus. The decrease is more marked than the decrease in firing rate because it is the selective part of the firing that is especially attenuated by the mask, not the spontaneous firing, and also because the neuronal response is more variable at short SOAs. However, even at the shortest SOA of 20 msec, the information available is on average 0.1 bits. This compares to 0.3 bits with only the 16-msec target stimulus shown and a typical value for such neurons of 0.4 to 0.5 bits with a 500-msec stimulus. The results thus show that considerable information is available from neuronal responses even under backward masking conditions that allow the neurons to have their main response in 30 msec. This provides evidence for how rapid the processing of visual information is in a cortical area and provides a fundamental constraint for understanding how cortical information processing operates.


Sign in / Sign up

Export Citation Format

Share Document