scholarly journals Prediction of Kovats Retention Indices of Some Aliphatic Aldehydes and Ketones on Some Stationary Phases at Different Temperatures Using Artificial Neural Network

2008 ◽  
Vol 46 (5) ◽  
pp. 406-412 ◽  
Author(s):  
E. Konoz ◽  
M. H. Fatemi ◽  
R. Faraji
2021 ◽  
Vol 75 (5) ◽  
pp. 277-283
Author(s):  
Jelena Lubura ◽  
Predrag Kojic ◽  
Jelena Pavlicevic ◽  
Bojana Ikonic ◽  
Radovan Omorjan ◽  
...  

Determination of rubber rheological properties is indispensable in order to conduct efficient vulcanization process in rubber industry. The main goal of this study was development of an advanced artificial neural network (ANN) for quick and accurate vulcanization data prediction of commercially available rubber gum for tire production. The ANN was developed by using the platform for large-scale machine learning TensorFlow with the Sequential Keras-Dense layer model, in a Python framework. The ANN was trained and validated on previously determined experimental data of torque on time at five different temperatures, in the range from 140 to 180 oC, with a step of 10 oC. The activation functions, ReLU, Sigmoid and Softplus, were used to minimize error, where the ANN model with Softplus showed the most accurate predictions. Numbers of neurons and layers were varied, where the ANN with two layers and 20 neurons in each layer showed the most valid results. The proposed ANN was trained at temperatures of 140, 160 and 180 oC and used to predict the torque dependence on time for two test temperatures (150 and 170 oC). The obtained solutions were confirmed as accurate predictions, showing the mean absolute percentage error (MAPE) and mean squared error (MSE) values were less than 1.99 % and 0.032 dN2 m2, respectively.


2022 ◽  
Vol 1048 ◽  
pp. 366-375
Author(s):  
Pavan Chandrasekar ◽  
Anjala Nourin ◽  
Addepalli Sri Naga Bhushana Aravind Gupta ◽  
Bavineni Venkata Jyoshna ◽  
Dhanya Sathyan

Abstract: Rheology is the science that concerns the flow of liquids, and the distortion of solids under an applied force. The study of the rheology of concrete determines the properties of fresh concrete. The rheological parameters are affected by temperature, stress conditions and several other factors. The main intention of this research is to model the rheological parameters of the fly ash incorporated cement with various types of superplasticizers exposed under different temperatures using an Artificial Neural Network. Test data were generated by performing rheological tests on cement paste at three distinct temperatures (15, 27, 35°C). Mixes were prepared using OPC, fly ash (15, 25, 35%) and superplasticizers of four different families. By conducting experiments, 252 data have been generated by modifying the combination of fly-ash, superplasticizer, and test temperature. Among the 252 data, 80% has been utilized for training and 20% is utilized for predicting the model’s accuracy. The input layer of the model consists of test temperature, the amount of fly ash replaced, cement and water content, and four different groups of superplasticizers. The cement paste’s yield stress was the output parameter of the model. The model generated data has been compared with the experimentally generated data to determine the accuracy of the model.Keywords: Rheology, Fly Ash, Superplasticizer, Temperature, ANN


Sign in / Sign up

Export Citation Format

Share Document