Liquid-chromatographic assay of cefamandole in serum, urine, and dialysis fluid.

1986 ◽  
Vol 32 (1) ◽  
pp. 197-200 ◽  
Author(s):  
M Bliss ◽  
M Mayersohn

Abstract We describe a "high-performance" liquid-chromatographic assay for quantifying cefamandole in biological fluids from patients with renal impairment. Serum samples are deproteinized with acetonitrile, then extracted with dichloromethane; dialysis-fluid samples are injected directly; urine samples are diluted appropriately before injection onto the reversed-phase column. The mobile phase is a methanol/aqueous solution (31/69 by vol) containing 500 microL of phosphoric acid, 20 mmol of sodium sulfate, and 200 microL of triethylamine per liter, the mixture being adjusted to pH 6.0 with NaOH. Retention time for cefamandole is 12 min. Its peak is well resolved in highly contaminated samples from renally impaired subjects. The assay's selectivity, reproducibility (within-day and between-day CVs less than 8% in all three sample fluids), and sensitivity--0.5 mg/L in serum, 1.0 mg/L in dialysis fluid, and 5.0 mg/L in urine--make it applicable to pharmacokinetic studies.

1978 ◽  
Vol 24 (5) ◽  
pp. 778-781 ◽  
Author(s):  
R L Thies ◽  
L J Fischer

Abstract We describe a method for measuring chloramphenicol by high-performance liquid chromatography. The assay involves a single extraction of the biological sample with ether, evaporation of the extract, and chromatography of the residue, redissolved in methanol. A reversed-phase column with an eluting solvent of methanol/water (30/70 by vol) is used. Chloramphenicol is eluted from the column in about 4 min and is well separated from the internal standard (mephenesin), which is eluted at 5.5 min. Absorption of the effluent at 278 nm is monitored and measured. As little as 0.1 microgram of the antibiotic can be analyzed after its extraction from a 0.1-ml sample. The method is suitable for rapid and specific analysis for the drug in plasma, urine, cerebrospinal fluid, and other biological fluids.


2019 ◽  
Vol 69 (12) ◽  
pp. 3590-3592
Author(s):  
Nela Bibire ◽  
Romeo Iulian Olariu ◽  
Luminita Agoroaei ◽  
Madalina Vieriu ◽  
Alina Diana Panainte ◽  
...  

Active pharmaceutical ingredients such as isoniazid, pyrazinamide and rifampicin are among the most important first-line anti-tuberculosis drugs. A simple, rapid and sensitive reversed phase-high performance liquid chromatographic assay method for the simultaneous determination of isoniazid, pyrazinamide and rifampicin has been developed. Separation of the interest compounds was achieved in a 10 min chromatographic run in gradient elution mode on a Zorbax SB-C18 stainless steel column (150 � 4 mm, 5 mm) using a guard column containing the same stationary phase. The gradient elution was carried out with a mobile phase of 10% CH3CN aqueous solution for channel A and 50% CH3CN in pH = 6.8 phosphate buffer (20 mM), to which 1.5 mL triethylamine were added for channel B. Quantification of the analyzed substances was carried out spectrophotometrically at 269 nm. Detection limits of 0.48 mg/L for isoniazid, 0.52 mg/L for pyrazinamide and 0.48 mg/L for rifampicin were established for the developed assay method. The present work showed that the proposed analysis method was advantageous for simple and rapid analysis of the active pharmaceutical ingredients in pharmaceuticals and biological fluids.


1990 ◽  
Vol 36 (1) ◽  
pp. 5-8 ◽  
Author(s):  
J G Goddard ◽  
G J Kontoghiorghes

Abstract "High-performance" liquid-chromatographic (HPLC) methods have been developed for identifying 1-substituted 2-alkyl-3-hydroxypyrid-4-one iron chelators in serum and urine. Ion pairing with heptane- or octanesulfonic acid in pH 2.0-2.2 phosphate buffer and reversed-phase chromatography were required to separate these compounds from endogenous compounds in both biological fluids. In both the 2-methyl and 2-ethyl series of 1-substituted compounds (H, methyl, ethyl, or propyl) the elution times increased in accordance with the n-octanol/water partition coefficients (propyl greater than ethyl greater than H greater than methyl). Urine samples were filtered (0.4 microns pore size) and injected either undiluted or after dilution with elution buffer. After the addition of internal standard, the plasma or serum samples were deproteinized by treatment with HCIO4, 0.5 mol/L, centrifuged, and the supernates were injected directly onto the HPLC. Using these procedures, we could identify 1,2-dimethyl-3-hydroxypyrid-4-one (L1) in the serum and urine of a thalassemic patient who had received a 3-g dose of the drug and in the urine of other patients who had received the same dose. One or more possible metabolites were also observed in the chromatograms of both urine and serum. The 24-h urinary output of L1 (0.22-2.37 g) and iron (10.6-71.5 mg) varied but there was no correlation between the two with respect to quantity or concentration. Instead, urinary iron output was higher in patients with a greater number of transfused units of erythrocytes. This is the first study in humans to show that L1 is absorbed from the gut, enters the circulation, and is excreted in the urine.


2013 ◽  
Vol 9 (2) ◽  
pp. 26-29 ◽  
Author(s):  
AK Hemanth Kumar ◽  
V Sudha ◽  
Geetha Ramachandran

A high performance liquid chromatographic method for determination of rifabutin in human plasma was  developed. The method involved deproteinisation of the sample with acetonitrile and analysis of the  supernatant using a reversed-phase C18 column (250mm) and UV detection at a wavelength of 265nm.  The assay was specific for rifabutin and linear from 0.025 to 10.0μg/ml. The relative standard deviation  of intra- and inter-day assays was lower than 10%. The method was able to remove interfering materials  in plasma, yielding an average recovery of rifabutin from plasma of 101%. Due to its simplicity, the assay  can be used for pharmacokinetic studies of rifabutin. SAARC Journal of Tuberculosis, Lung Diseases & HIV/AIDS; 2012; IX(2) 26-29 DOI: http://dx.doi.org/10.3126/saarctb.v9i2.7975


Author(s):  
Grishma H Patel ◽  
Shreya D Adeshra ◽  
Dhananjay B Meshram

A Novel, selective, accurate and rapid Reversed Phase High Performance Liquid Chromatographic (RPHPLC) method for the analysis of Efonidipine Hydrochloride Ethanolate and Telmisartan in binary mixture has been developed and validated. The chromatographic system consisted of a Phenomenex Kinetex ® 5µ C18 Size: 150 * 4.6mm column and the separation was achieved by using ambient temperature with a mobile phase containing mobile Phase Acetonitrile:25mM Phosphate Buffer pH 4.9 (45:55). The samples were monitored at 253 nm for detection at a flow rate of 1.0 mL/min and the retention time was about 7.77 and 4.10 mins for Efonidipine Hydrochloride Ehanolate and Telmisartan respectively. The calibration curve was linear over the concentration range 5-30 and 10-60 ?g/mL for Efonidipine Hydrochloride Ehanolate and Telmisartan respectively. The proposed method is accurate in the range of 99.75% - 100.10% recovery and precise (%RSD of intraday variation and % RSD of inter day variation were found to be within the acceptance criteria). Therefore, this method can be used as a more convenient and efficient option for the analysis of Efonidipine Hydrochloride Ehanolate and Telmisartan in Quality control laboratory.


2017 ◽  
Vol 1 (2) ◽  
pp. 1-8
Author(s):  
Milena Cristina Ribeiro Souza Magalhães ◽  
Alisson Samuel Portes Caldeira ◽  
Hanna De Sousa Rocha Almeida ◽  
Sílvia Ligório Fialho ◽  
Armando Da Silva Cunha Junior

A reversed-phase high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of encapsulation efficiency of zidovudine in nanoparticules. The method was carried out in isocratic mode using 0.040M sodium acetate: methanol: acetonitrile: glacial acetic acid (880:100:20:2) as mobile phase, a C8 column at 25ºC and UV detection at 240 nm. The method was linear (r2 ˃ 0.99) over the range of 25.0-150.0 μg/mL, precise (RSD ˂ 5%), accurate (recovery = 100.5%), robust and selective. The validated HPLC-UV method can be successfully applied to determine the rate of zidovudine in nanoparticules.


Sign in / Sign up

Export Citation Format

Share Document