Lee Spector
 Automatic Quantum Computer Programming: A Genetic Programming Approach. Kluwer Academic Publishers (2004). ISBN 1-4020-7894-3. €100. 153 pp.

2005 ◽  
Vol 49 (1) ◽  
pp. 129-130
Author(s):  
Anas N. Al-Rabadi
2021 ◽  
Author(s):  
Olivia-Linda Enciu

Manual quantum programming is generally diffcult for humans, due to the often hard-to-grasp properties of quantum mechanics and quantum computers. By outlining the target (or desired) behaviour of a particular quantum program, the task of programming can be turned into a search and optimization problem. A flexible evolutionary technique known as genetic programming may then be used as an aid in the search for quantum programs. In this work a genetic programming approach uses an estimation of distribution algorithm (EDA) to learn the probability distribution of optimal solution(s), given some target behaviour of a quantum program.


2021 ◽  
Author(s):  
Olivia-Linda Enciu

Manual quantum programming is generally diffcult for humans, due to the often hard-to-grasp properties of quantum mechanics and quantum computers. By outlining the target (or desired) behaviour of a particular quantum program, the task of programming can be turned into a search and optimization problem. A flexible evolutionary technique known as genetic programming may then be used as an aid in the search for quantum programs. In this work a genetic programming approach uses an estimation of distribution algorithm (EDA) to learn the probability distribution of optimal solution(s), given some target behaviour of a quantum program.


2016 ◽  
Vol 24 (1) ◽  
pp. 143-182 ◽  
Author(s):  
Harith Al-Sahaf ◽  
Mengjie Zhang ◽  
Mark Johnston

In the computer vision and pattern recognition fields, image classification represents an important yet difficult task. It is a challenge to build effective computer models to replicate the remarkable ability of the human visual system, which relies on only one or a few instances to learn a completely new class or an object of a class. Recently we proposed two genetic programming (GP) methods, one-shot GP and compound-GP, that aim to evolve a program for the task of binary classification in images. The two methods are designed to use only one or a few instances per class to evolve the model. In this study, we investigate these two methods in terms of performance, robustness, and complexity of the evolved programs. We use ten data sets that vary in difficulty to evaluate these two methods. We also compare them with two other GP and six non-GP methods. The results show that one-shot GP and compound-GP outperform or achieve results comparable to competitor methods. Moreover, the features extracted by these two methods improve the performance of other classifiers with handcrafted features and those extracted by a recently developed GP-based method in most cases.


2009 ◽  
Vol 18 (05) ◽  
pp. 757-781 ◽  
Author(s):  
CÉSAR L. ALONSO ◽  
JOSÉ LUIS MONTAÑA ◽  
JORGE PUENTE ◽  
CRUZ ENRIQUE BORGES

Tree encodings of programs are well known for their representative power and are used very often in Genetic Programming. In this paper we experiment with a new data structure, named straight line program (slp), to represent computer programs. The main features of this structure are described, new recombination operators for GP related to slp's are introduced and a study of the Vapnik-Chervonenkis dimension of families of slp's is done. Experiments have been performed on symbolic regression problems. Results are encouraging and suggest that the GP approach based on slp's consistently outperforms conventional GP based on tree structured representations.


Sign in / Sign up

Export Citation Format

Share Document