scholarly journals Single-cell RNA sequencing reveals cell type- and artery type-specific vascular remodelling in male spontaneously hypertensive rats

Author(s):  
Jun Cheng ◽  
Wenduo Gu ◽  
Ting Lan ◽  
Jiacheng Deng ◽  
Zhichao Ni ◽  
...  

Abstract Aims Hypertension is a major risk factor for cardiovascular diseases. However, vascular remodelling, a hallmark of hypertension, has not been systematically characterized yet. We described systematic vascular remodelling, especially the artery type- and cell type-specific changes, in hypertension using spontaneously hypertensive rats (SHRs). Methods and results Single-cell RNA sequencing was used to depict the cell atlas of mesenteric artery (MA) and aortic artery (AA) from SHRs. More than 20 000 cells were included in the analysis. The number of immune cells more than doubled in aortic aorta in SHRs compared to Wistar Kyoto controls, whereas an expansion of MA mesenchymal stromal cells (MSCs) was observed in SHRs. Comparison of corresponding artery types and cell types identified in integrated datasets unravels dysregulated genes specific for artery types and cell types. Intersection of dysregulated genes with curated gene sets including cytokines, growth factors, extracellular matrix (ECM), receptors, etc. revealed vascular remodelling events involving cell–cell interaction and ECM re-organization. Particularly, AA remodelling encompasses upregulated cytokine genes in smooth muscle cells, endothelial cells, and especially MSCs, whereas in MA, change of genes involving the contractile machinery and downregulation of ECM-related genes were more prominent. Macrophages and T cells within the aorta demonstrated significant dysregulation of cellular interaction with vascular cells. Conclusion Our findings provide the first cell landscape of resistant and conductive arteries in hypertensive animal models. Moreover, it also offers a systematic characterization of the dysregulated gene profiles with unbiased, artery type-specific and cell type-specific manners during hypertensive vascular remodelling.

2020 ◽  
Author(s):  
Jiaxin Fan ◽  
Xuran Wang ◽  
Rui Xiao ◽  
Mingyao Li

AbstractAllelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provided a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.Author SummaryDetection of allelic expression imbalance (AEI), a phenomenon where the two alleles of a gene differ in their expression magnitude, is a key step towards the understanding of phenotypic variations among individuals. Existing methods detect AEI use bulk RNA sequencing (RNA-seq) data and ignore AEI variations among different cell types. Although single-cell RNA sequencing (scRNA-seq) has enabled the characterization of cell-to-cell heterogeneity in gene expression, the high costs have limited its application in AEI analysis. To overcome this limitation, we developed BSCET to characterize cell-type-specific AEI using the widely available bulk RNA-seq data by integrating cell-type composition information inferred from scRNA-seq samples. Since the degree of AEI may vary with disease phenotypes, we further extended BSCET to detect genes whose cell-type-specific AEIs are associated with clinical factors. Through extensive benchmark evaluations and analyses of two pancreatic islet bulk RNA-seq datasets, we demonstrated BSCET’s ability to refine bulk-level AEI to cell-type resolution, and to identify genes whose cell-type-specific AEIs are associated with the progression of type 2 diabetes. With the vast amount of easily accessible bulk RNA-seq data, we believe BSCET will be a valuable tool for elucidating cell type contributions in human diseases.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009080
Author(s):  
Jiaxin Fan ◽  
Xuran Wang ◽  
Rui Xiao ◽  
Mingyao Li

Allelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provided a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.


2020 ◽  
Author(s):  
Benjamin D. Harris ◽  
Megan Crow ◽  
Stephan Fischer ◽  
Jesse Gillis

ABSTRACTSingle-cell RNA-sequencing (scRNAseq) data can reveal co-regulatory relationships between genes that may be hidden in bulk RNAseq due to cell type confounding. Using the primary motor cortex data from the Brain Initiative Cell Census Network (BICCN), we study cell type specific co-expression across 500,000 cells. Surprisingly, we find that the same gene-gene relationships that differentiate cell types are evident at finer and broader scales, suggesting a consistent multiscale regulatory landscape.


2020 ◽  
Author(s):  
Kengo Tejima ◽  
Satoshi Kozawa ◽  
Thomas N. Sato

AbstractComputational deconvolution of transcriptome data of organs/tissues uncovers their structural and functional complexities at cellular resolution without performing single-cell RNA-sequencing experiments. However, the deconvolution of highly heterogenous diverse organs/tissues remains a challenge. Herein, we report “cell type-specific weighting-factors” that are essential for accurate deconvolution, but critically lacking in the existing methods. We computed such weighting-factors for 97 cell-types across 10 mouse organs and demonstrate their effective usage in the Bayesian framework to generate their virtual single-cell RNA-sequencing data, hence accurately estimating both cell-type ratios and the complete transcriptome of each cell-type in these organs. The method also efficiently detects the temporal changes of such cell type-profiles during organ pathogenesis in disease models. Furthermore, we present its potential utility for human organ/bulk-tissue deconvolution. Taken together, the weighting-factors reported herein and their computation for new cell-types and/or new species such as human are essential tools/resources for studying high-resolution biology and disease.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205883 ◽  
Author(s):  
Joseph C. Mays ◽  
Michael C. Kelly ◽  
Steven L. Coon ◽  
Lynne Holtzclaw ◽  
Martin F. Rath ◽  
...  

Cephalalgia ◽  
2018 ◽  
Vol 38 (13) ◽  
pp. 1976-1983 ◽  
Author(s):  
William Renthal

Background Migraine is a debilitating disorder characterized by severe headaches and associated neurological symptoms. A key challenge to understanding migraine has been the cellular complexity of the human brain and the multiple cell types implicated in its pathophysiology. The present study leverages recent advances in single-cell transcriptomics to localize the specific human brain cell types in which putative migraine susceptibility genes are expressed. Methods The cell-type specific expression of both familial and common migraine-associated genes was determined bioinformatically using data from 2,039 individual human brain cells across two published single-cell RNA sequencing datasets. Enrichment of migraine-associated genes was determined for each brain cell type. Results Analysis of single-brain cell RNA sequencing data from five major subtypes of cells in the human cortex (neurons, oligodendrocytes, astrocytes, microglia, and endothelial cells) indicates that over 40% of known migraine-associated genes are enriched in the expression profiles of a specific brain cell type. Further analysis of neuronal migraine-associated genes demonstrated that approximately 70% were significantly enriched in inhibitory neurons and 30% in excitatory neurons. Conclusions This study takes the next step in understanding the human brain cell types in which putative migraine susceptibility genes are expressed. Both familial and common migraine may arise from dysfunction of discrete cell types within the neurovascular unit, and localization of the affected cell type(s) in an individual patient may provide insight into to their susceptibility to migraine.


2019 ◽  
Vol 47 (16) ◽  
pp. e95-e95 ◽  
Author(s):  
Jurrian K de Kanter ◽  
Philip Lijnzaad ◽  
Tito Candelli ◽  
Thanasis Margaritis ◽  
Frank C P Holstege

Abstract Cell type identification is essential for single-cell RNA sequencing (scRNA-seq) studies, currently transforming the life sciences. CHETAH (CHaracterization of cEll Types Aided by Hierarchical classification) is an accurate cell type identification algorithm that is rapid and selective, including the possibility of intermediate or unassigned categories. Evidence for assignment is based on a classification tree of previously available scRNA-seq reference data and includes a confidence score based on the variance in gene expression per cell type. For cell types represented in the reference data, CHETAH’s accuracy is as good as existing methods. Its specificity is superior when cells of an unknown type are encountered, such as malignant cells in tumor samples which it pinpoints as intermediate or unassigned. Although designed for tumor samples in particular, the use of unassigned and intermediate types is also valuable in other exploratory studies. This is exemplified in pancreas datasets where CHETAH highlights cell populations not well represented in the reference dataset, including cells with profiles that lie on a continuum between that of acinar and ductal cell types. Having the possibility of unassigned and intermediate cell types is pivotal for preventing misclassification and can yield important biological information for previously unexplored tissues.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Steven Schaffert ◽  
Aram Krauson ◽  
Elisabeth Walczak ◽  
Jonathan Nizar ◽  
Gwendolyn Holdgate ◽  
...  

2021 ◽  
Vol 118 (10) ◽  
pp. e2013056118
Author(s):  
Huijuan Feng ◽  
Daniel F. Moakley ◽  
Shuonan Chen ◽  
Melissa G. McKenzie ◽  
Vilas Menon ◽  
...  

The enormous cellular diversity in the mammalian brain, which is highly prototypical and organized in a hierarchical manner, is dictated by cell-type–specific gene-regulatory programs at the molecular level. Although prevalent in the brain, the contribution of alternative splicing (AS) to the molecular diversity across neuronal cell types is just starting to emerge. Here, we systematically investigated AS regulation across over 100 transcriptomically defined neuronal types of the adult mouse cortex using deep single-cell RNA-sequencing data. We found distinct splicing programs between glutamatergic and GABAergic neurons and between subclasses within each neuronal class. These programs consist of overlapping sets of alternative exons showing differential splicing at multiple hierarchical levels. Using an integrative approach, our analysis suggests that RNA-binding proteins (RBPs) Celf1/2, Mbnl2, and Khdrbs3 are preferentially expressed and more active in glutamatergic neurons, while Elavl2 and Qk are preferentially expressed and more active in GABAergic neurons. Importantly, these and additional RBPs also contribute to differential splicing between neuronal subclasses at multiple hierarchical levels, and some RBPs contribute to splicing dynamics that do not conform to the hierarchical structure defined by the transcriptional profiles. Thus, our results suggest graded regulation of AS across neuronal cell types, which may provide a molecular mechanism to specify neuronal identity and function that are orthogonal to established classifications based on transcriptional regulation.


Sign in / Sign up

Export Citation Format

Share Document