scholarly journals Detecting cell-type-specific allelic expression imbalance by integrative analysis of bulk and single-cell RNA sequencing data

2020 ◽  
Author(s):  
Jiaxin Fan ◽  
Xuran Wang ◽  
Rui Xiao ◽  
Mingyao Li

AbstractAllelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provided a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.Author SummaryDetection of allelic expression imbalance (AEI), a phenomenon where the two alleles of a gene differ in their expression magnitude, is a key step towards the understanding of phenotypic variations among individuals. Existing methods detect AEI use bulk RNA sequencing (RNA-seq) data and ignore AEI variations among different cell types. Although single-cell RNA sequencing (scRNA-seq) has enabled the characterization of cell-to-cell heterogeneity in gene expression, the high costs have limited its application in AEI analysis. To overcome this limitation, we developed BSCET to characterize cell-type-specific AEI using the widely available bulk RNA-seq data by integrating cell-type composition information inferred from scRNA-seq samples. Since the degree of AEI may vary with disease phenotypes, we further extended BSCET to detect genes whose cell-type-specific AEIs are associated with clinical factors. Through extensive benchmark evaluations and analyses of two pancreatic islet bulk RNA-seq datasets, we demonstrated BSCET’s ability to refine bulk-level AEI to cell-type resolution, and to identify genes whose cell-type-specific AEIs are associated with the progression of type 2 diabetes. With the vast amount of easily accessible bulk RNA-seq data, we believe BSCET will be a valuable tool for elucidating cell type contributions in human diseases.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (3) ◽  
pp. e1009080
Author(s):  
Jiaxin Fan ◽  
Xuran Wang ◽  
Rui Xiao ◽  
Mingyao Li

Allelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provided a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases.


Author(s):  
Jun Cheng ◽  
Wenduo Gu ◽  
Ting Lan ◽  
Jiacheng Deng ◽  
Zhichao Ni ◽  
...  

Abstract Aims Hypertension is a major risk factor for cardiovascular diseases. However, vascular remodelling, a hallmark of hypertension, has not been systematically characterized yet. We described systematic vascular remodelling, especially the artery type- and cell type-specific changes, in hypertension using spontaneously hypertensive rats (SHRs). Methods and results Single-cell RNA sequencing was used to depict the cell atlas of mesenteric artery (MA) and aortic artery (AA) from SHRs. More than 20 000 cells were included in the analysis. The number of immune cells more than doubled in aortic aorta in SHRs compared to Wistar Kyoto controls, whereas an expansion of MA mesenchymal stromal cells (MSCs) was observed in SHRs. Comparison of corresponding artery types and cell types identified in integrated datasets unravels dysregulated genes specific for artery types and cell types. Intersection of dysregulated genes with curated gene sets including cytokines, growth factors, extracellular matrix (ECM), receptors, etc. revealed vascular remodelling events involving cell–cell interaction and ECM re-organization. Particularly, AA remodelling encompasses upregulated cytokine genes in smooth muscle cells, endothelial cells, and especially MSCs, whereas in MA, change of genes involving the contractile machinery and downregulation of ECM-related genes were more prominent. Macrophages and T cells within the aorta demonstrated significant dysregulation of cellular interaction with vascular cells. Conclusion Our findings provide the first cell landscape of resistant and conductive arteries in hypertensive animal models. Moreover, it also offers a systematic characterization of the dysregulated gene profiles with unbiased, artery type-specific and cell type-specific manners during hypertensive vascular remodelling.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mingchao Li ◽  
Qing Min ◽  
Matthew C. Banton ◽  
Xinpeng Dun

Advances in single-cell RNA sequencing technologies and bioinformatics methods allow for both the identification of cell types in a complex tissue and the large-scale gene expression profiling of various cell types in a mixture. In this report, we analyzed a single-cell RNA sequencing (scRNA-seq) dataset for the intact adult mouse sciatic nerve and examined cell-type specific transcription factor expression and activity during peripheral nerve homeostasis. In total, we identified 238 transcription factors expressed in nine different cell types of intact mouse sciatic nerve. Vascular smooth muscle cells have the lowest number of transcription factors expressed with 17 transcription factors identified. Myelinating Schwann cells (mSCs) have the highest number of transcription factors expressed, with 61 transcription factors identified. We created a cell-type specific expression map for the identified 238 transcription factors. Our results not only provide valuable information about the expression pattern of transcription factors in different cell types of adult peripheral nerves but also facilitate future studies to understand the function of key transcription factors in the peripheral nerve homeostasis and disease.


2020 ◽  
Author(s):  
Benjamin D. Harris ◽  
Megan Crow ◽  
Stephan Fischer ◽  
Jesse Gillis

ABSTRACTSingle-cell RNA-sequencing (scRNAseq) data can reveal co-regulatory relationships between genes that may be hidden in bulk RNAseq due to cell type confounding. Using the primary motor cortex data from the Brain Initiative Cell Census Network (BICCN), we study cell type specific co-expression across 500,000 cells. Surprisingly, we find that the same gene-gene relationships that differentiate cell types are evident at finer and broader scales, suggesting a consistent multiscale regulatory landscape.


2020 ◽  
Vol 16 (10) ◽  
pp. e1007939
Author(s):  
Amir Alavi ◽  
Ziv Bar-Joseph

Several studies profile similar single cell RNA-Seq (scRNA-Seq) data using different technologies and platforms. A number of alignment methods have been developed to enable the integration and comparison of scRNA-Seq data from such studies. While each performs well on some of the datasets, to date no method was able to both perform the alignment using the original expression space and generalize to new data. To enable such analysis we developed Single Cell Iterative Point set Registration (SCIPR) which extends methods that were successfully applied to align image data to scRNA-Seq. We discuss the required changes needed, the resulting optimization function, and algorithms for learning a transformation function for aligning data. We tested SCIPR on several scRNA-Seq datasets. As we show it successfully aligns data from several different cell types, improving upon prior methods proposed for this task. In addition, we show the parameters learned by SCIPR can be used to align data not used in the training and to identify key cell type-specific genes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor Mandric ◽  
Tommer Schwarz ◽  
Arunabha Majumdar ◽  
Kangcheng Hou ◽  
Leah Briscoe ◽  
...  

Abstract Single-cell RNA-sequencing (scRNA-Seq) is a compelling approach to directly and simultaneously measure cellular composition and state, which can otherwise only be estimated by applying deconvolution methods to bulk RNA-Seq estimates. However, it has not yet become a widely used tool in population-scale analyses, due to its prohibitively high cost. Here we show that given the same budget, the statistical power of cell-type-specific expression quantitative trait loci (eQTL) mapping can be increased through low-coverage per-cell sequencing of more samples rather than high-coverage sequencing of fewer samples. We use simulations starting from one of the largest available real single-cell RNA-Seq data from 120 individuals to also show that multiple experimental designs with different numbers of samples, cells per sample and reads per cell could have similar statistical power, and choosing an appropriate design can yield large cost savings especially when multiplexed workflows are considered. Finally, we provide a practical approach on selecting cost-effective designs for maximizing cell-type-specific eQTL power which is available in the form of a web tool.


2020 ◽  
Author(s):  
Kengo Tejima ◽  
Satoshi Kozawa ◽  
Thomas N. Sato

AbstractComputational deconvolution of transcriptome data of organs/tissues uncovers their structural and functional complexities at cellular resolution without performing single-cell RNA-sequencing experiments. However, the deconvolution of highly heterogenous diverse organs/tissues remains a challenge. Herein, we report “cell type-specific weighting-factors” that are essential for accurate deconvolution, but critically lacking in the existing methods. We computed such weighting-factors for 97 cell-types across 10 mouse organs and demonstrate their effective usage in the Bayesian framework to generate their virtual single-cell RNA-sequencing data, hence accurately estimating both cell-type ratios and the complete transcriptome of each cell-type in these organs. The method also efficiently detects the temporal changes of such cell type-profiles during organ pathogenesis in disease models. Furthermore, we present its potential utility for human organ/bulk-tissue deconvolution. Taken together, the weighting-factors reported herein and their computation for new cell-types and/or new species such as human are essential tools/resources for studying high-resolution biology and disease.


2019 ◽  
Author(s):  
Sergii Domanskyi ◽  
Anthony Szedlak ◽  
Nathaniel T Hawkins ◽  
Jiayin Wang ◽  
Giovanni Paternostro ◽  
...  

AbstractBackgroundSingle cell RNA sequencing (scRNA-seq) brings unprecedented opportunities for mapping the heterogeneity of complex cellular environments such as bone marrow, and provides insight into many cellular processes. Single cell RNA-seq, however, has a far larger fraction of missing data reported as zeros (dropouts) than traditional bulk RNA-seq. This makes difficult not only the clustering of cells, but also the assignment of the resulting clusters into predefined cell types based on known molecular signatures, such as the expression of characteristic cell surface markers.ResultsWe present a computational tool for processing single cell RNA-seq data that uses a voting algorithm to identify cells based on approval votes received by known molecular markers. Using a stochastic procedure that accounts for biases due to dropout errors and imbalances in the number of known molecular signatures for different cell types, the method computes the statistical significance of the final approval score and automatically assigns a cell type to clusters without an expert curator. We demonstrate the utility of the tool in the analysis of eight samples of bone marrow from the Human Cell Atlas. The tool provides a systematic identification of cell types in bone marrow based on a recently-published manually-curated cell marker database [1], and incorporates a suite of visualization tools that can be overlaid on a t-SNE representation. The software is freely available as a python package at https://github.com/sdomanskyi/DigitalCellSorterConclusionsThis methodology assures that extensive marker to cell type matching information is taken into account in a systematic way when assigning cell clusters to cell types. Moreover, the method allows for a high throughput processing of multiple scRNA-seq datasets, since it does not involve an expert curator, and it can be applied recursively to obtain cell sub-types. The software is designed to allow the user to substitute the marker to cell type matching information and apply the methodology to different cellular environments.


2017 ◽  
Author(s):  
Lingxue Zhu ◽  
Jing Lei ◽  
Bernie Devlin ◽  
Kathryn Roeder

Recent advances in technology have enabled the measurement of RNA levels for individual cells. Compared to traditional tissue-level bulk RNA-seq data, single cell sequencing yields valuable insights about gene expression profiles for different cell types, which is potentially critical for understanding many complex human diseases. However, developing quantitative tools for such data remains challenging because of high levels of technical noise, especially the “dropout” events. A “dropout” happens when the RNA for a gene fails to be amplified prior to sequencing, producing a “false” zero in the observed data. In this paper, we propose a Unified RNA-Sequencing Model (URSM) for both single cell and bulk RNA-seq data, formulated as a hierarchical model. URSM borrows the strength from both data sources and carefully models the dropouts in single cell data, leading to a more accurate estimation of cell type specific gene expression profile. In addition, URSM naturally provides inference on the dropout entries in single cell data that need to be imputed for downstream analyses, as well as the mixing proportions of different cell types in bulk samples. We adopt an empirical Bayes approach, where parameters are estimated using the EM algorithm and approximate inference is obtained by Gibbs sampling. Simulation results illustrate that URSM outperforms existing approaches both in correcting for dropouts in single cell data, as well as in deconvolving bulk samples. We also demonstrate an application to gene expression data on fetal brains, where our model successfully imputes the dropout genes and reveals cell type specific expression patterns.


PLoS ONE ◽  
2018 ◽  
Vol 13 (10) ◽  
pp. e0205883 ◽  
Author(s):  
Joseph C. Mays ◽  
Michael C. Kelly ◽  
Steven L. Coon ◽  
Lynne Holtzclaw ◽  
Martin F. Rath ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document