scholarly journals Inositol 1,4,5-trisphosphate-mediated sarcoplasmic reticulum–mitochondrial crosstalk influences adenosine triphosphate production via mitochondrial Ca2+uptake through the mitochondrial ryanodine receptor in cardiac myocytes

2016 ◽  
Vol 112 (1) ◽  
pp. 491-501 ◽  
Author(s):  
Lea K. Seidlmayer ◽  
Johannes Kuhn ◽  
Annette Berbner ◽  
Paula-Anahi Arias-Loza ◽  
Tatjana Williams ◽  
...  
2000 ◽  
Vol 279 (4) ◽  
pp. H1482-H1489 ◽  
Author(s):  
Y. S. Prakash ◽  
Mathur S. Kannan ◽  
Timothy F. Walseth ◽  
Gary C. Sieck

cADP ribose (cADPR)-induced intracellular Ca2+ concentration ([Ca2+]i) responses were assessed in acutely dissociated adult rat ventricular myocytes using real-time confocal microscopy. In quiescent single myocytes, injection of cADPR (0.1–10 μM) induced sustained, concentration-dependent [Ca2+]i responses ranging from 50 to 500 nM, which were completely inhibited by 20 μM 8-amino-cADPR, a specific blocker of the cADPR receptor. In myocytes displaying spontaneous [Ca2+]i waves, increasing concentrations of cADPR increased wave frequency up to ∼250% of control. In electrically paced myocytes (0.5 Hz, 5-ms duration), cADPR increased the amplitude of [Ca2+]i transients in a concentration-dependent fashion, up to 150% of control. Administration of 8-amino-cADPR inhibited both spontaneous waves as well as [Ca2+]i responses to electrical stimulation, even in the absence of exogenous cADPR. However, subsequent [Ca2+]i responses to 5 mM caffeine were only partially inhibited by 8-amino-cADPR. In contrast, even under conditions where ryanodine receptor (RyR) channels were blocked with ryanodine, high cADPR concentrations still induced an [Ca2+]i response. These results indicate that in cardiac myocytes, cADPR induces Ca2+ release from the sarcoplasmic reticulum through both RyR channels and via mechanisms independent of RyR channels.


1997 ◽  
Vol 3 (S2) ◽  
pp. 247-248
Author(s):  
J.R. Sommer ◽  
T. High ◽  
P. Ingram ◽  
D. Kopf ◽  
R. Nassar ◽  
...  

Extended junctional sarcoplasmic reticulum (EJSR) is an invariant differentiation of the sarcoplasmic reticulum (SR) in bird cardiac myocytes (CM) and central to excitation-contraction coupling (ECC). EJSR occurs as both continuous and discontinuous extensions of junctional sarcoplasmic reticulum (JSR), and surrounds and pervades the Z/I band as the “ EJSR Z-rete” whose geometry has mechanistic implications for the function of “couplings” in ECC, in general. “Peripheral coupling(s)” (PC) in birds, and the additional “interior coupling(s)” (IC) at transverse tubules (TT) in mammals, are formed by tight apposition to plasmalemma of JSR, a specialized calcium (Ca) store of the SR. Free SR (FSR; i.e. free of JSR/EJSR specializations) is the rest of the smooth, tubular SR network, which connects intercalated patches of EJSR forming the EJSR Z-retes and, elsewhere, displays both longitudinal and transverse geometries in surrounding the contractile material for the purpose of sequestering Ca after each muscle contraction. Except for EJSR having no plasmalemmal contact, morphologically, EJSR and JSR are homologues:1 both have similar sizes; are studded (approx. 32 nm center-to-center) with junctional processes (JP; ryanodine receptor (RyR)/-Ca-release channels);


2008 ◽  
Vol 17 ◽  
pp. S232
Author(s):  
David Crossman ◽  
Christian Soeller ◽  
Peter Ruygrok ◽  
Mark Cannell

1999 ◽  
Vol 90 (3) ◽  
pp. 835-843 ◽  
Author(s):  
Hirochika Komai ◽  
Andrew J. Lokuta

Background Although various local anesthetics can cause histologic damage to skeletal muscle when injected intramuscularly, bupivacaine appears to have an exceptionally high rate of myotoxicity. Research has suggested that an effect of bupivacaine on sarcoplasmic reticulum Ca2+ release is involved in its myotoxicity, but direct evidence is lacking. Furthermore, it is not known whether the toxicity depends on the unique chemical characteristics of bupivacaine and whether the toxicity is found only in skeletal muscle. Methods The authors studied the effects of bupivacaine and the similarly lipid-soluble local anesthetic, tetracaine, on the Ca2+ release channel-ryanodine receptor of sarcoplasmic reticulum in swine skeletal and cardiac muscle. [3H]Ryanodine binding was used to measure the activity of the Ca2+ release channel-ryanodine receptors in microsomes of both muscles. Results Bupivacaine enhanced (by two times at 5 mM) and inhibited (66% inhibition at 10 mM) [3H]ryanodine binding to skeletal muscle microsomes. In contrast, only inhibitory effects were observed with cardiac microsomes (about 3 mM for half-maximal inhibition). Tetracaine, which inhibits [3H]ryanodine binding to skeletal muscle microsomes, also inhibited [3H]ryanodine binding to cardiac muscle microsomes (half-maximal inhibition at 99 microM). Conclusions Bupivacaine's ability to enhance Ca2+ release channel-ryanodine receptor activity of skeletal muscle sarcoplasmic reticulum most likely contributes to the myotoxicity of this local anesthetic. Thus, the pronounced myotoxicity of bupivacaine may be the result of this specific effect on Ca2+ release channel-ryanodine receptor superimposed on a nonspecific action on lipid bilayers to increase the Ca2+ permeability of sarcoplasmic reticulum membranes, an effect shared by all local anesthetics. The specific action of tetracaine to inhibit Ca2+ release channel-ryanodine receptor activity may in part counterbalance the nonspecific action, resulting in moderate myotoxicity.


2014 ◽  
Author(s):  
Nicola Fameli ◽  
Oluseye A. Ogunbayo ◽  
Cornelis van Breemen ◽  
A. Mark Evans

We demonstrate how nanojunctions between lysosomes and sarcoplasmic reticulum (L-SR junctions) serve to couple lysosomal activation to regenerative, ryanodine receptor-mediated cellular calcium (Ca2+) waves. In pulmonary artery smooth muscle cells (PASMCs) nicotinic acid adenine dinucleotide phosphate (NAADP) may trigger increases in cytoplasmic Ca2+ via L-SR junctions, in a manner that requires initial Ca2+ release from lysosomes and subsequent Ca2+-induced Ca2+ release (CICR) via ryanodine receptor (RyR) subtype 3 on the SR membrane proximal to lysosomes. L-SR junction membrane separation has been estimated to be <400 nm and thus beyond the resolution of light microscopy. This study utilizes transmission electron microscopy to provide a thorough ultrastructural characterization of the L-SR junctions in PASMCs. These junctions are prominent features in these cells and we estimate that the membrane separation and extension are about 15 nm and 300 nm, respectively. We also develop a quantitative model of the L-SR junction using these measurements, prior kinetic and specific Ca2+ signal information as input data. Simulations of NAADP-dependent junctional Ca2+ transients show that the magnitude of these signals can breach the threshold for CICR via RyR3. By correlation analysis of live cell Ca2+ signals and simulated L-SR junctional Ca2+ transients, we estimate that "trigger zones" with a 60-100 junctions are required to confer a signal of similar magnitude. This is compatible with the 130 lysosomes/cell estimated from our ultrastructural observations. Most importantly, our model shows that increasing the L-SR junctional width above 50 nm lowers the magnitude of junctional [Ca2+] such that there is a failure to breach the threshold for CICR via RyR3. L-SR junctions are therefore a pre-requisite for efficient Ca2+ signal coupling and may contribute to cellular function in health and disease.


Sign in / Sign up

Export Citation Format

Share Document