scholarly journals P820 An easy and rapid targeted next generation sequencing-based genotyping assay for the validated IBD risk loci

2020 ◽  
Vol 14 (Supplement_1) ◽  
pp. S637-S638
Author(s):  
S Verstockt ◽  
L Hannes ◽  
S Deman ◽  
W J Wollants ◽  
E Souche ◽  
...  

Abstract Background Inflammatory bowel diseases (IBD) are complex genetic diseases for which 242 susceptibility loci have been identified thus far. For translational or functional follow-up studies it can be of interest to know the genotype of specific variants. For other studies a composite genetic risk score–the polygenic risk score–is of value. There currently is a gap in technology to genotype a few hundred variants in a flexible and cost-effective way. We therefore developed a genotyping assay for the 242 validated IBD susceptibility loci. Methods Using MIPgen v.1.1, we designed molecular inversion probes (MIPs) covering 269 independent variants from the 242 IBD loci. MIP libraries were prepared according to Neveling et al. (Clin Chem. 2017), followed by paired-end sequencing using a MiSeq® System (Illumina). In the pilot studies, 16 IBD patients were genotyped, and results were compared with available immunochip (ichip) data. Genotypes for the covered variants were obtained using an in-house developed pipeline, and performance metrics were assessed (incl. genotyping call rate, percentage off-target reads and concordance with ichip-based genotypes). After optimisation, we genotyped 279 individuals (168 IBD patients and 111 non-IBD controls). We also calculated a weighted IBD polygenic risk score (PRSice 2.0) for these. Results Despite a genotyping call rate of 94.3%, the first pilot run suffered from a high rate of off-target reads (52.5%). After redesigning poorly-performing MIPs, off-target reads dropped to 9.4%, and the genotyping call rate increased to 97.5%. Concordance with genotypes previously obtained from ichip was 99.3%. When applying the optimised design on a larger scale (i.e. on the 279 individuals), we obtained similar performance metrics, with 8.0% off-target reads and a genotyping call rate of 97.3%. Moreover, upscaling resulted in a turnaround time of 2.5 working days/96 samples and a cost of €14/sample. The calculated IBD polygenic risk scores showed higher scores in patients as compared with controls (5.5E−03 vs. 4.0E−03, p = 8.80E−10; R² IBD polygenic risk score = 0.15, p = 1.28E−07), however with a large overlap between both groups. Quartile analysis showed that individuals within the highest quartile had an 8.1-fold (95% CI: 3.7–17.5) increase in risk towards IBD compared with individuals in the first quartile. Conclusion We developed a cost-effective genotyping assay for currently known IBD risk loci, with an integrated bioinformatics pipeline from raw sequencing data to individual genotypes and calculation of a polygenic risk score. Furthermore, this assay enables genotyping of individuals on a large scale while remaining flexible to implement newly identified genetic variants.

2020 ◽  
Author(s):  
Michael Northcutt ◽  
Zhuqing Shi ◽  
Michael Zijlstra ◽  
Ayush Shah ◽  
Siqun Zheng ◽  
...  

Abstract Background: Single nucleotide polymorphism (SNP)-based polygenic risk scoring is predictive of colorectal cancer (CRC) risk. However, few studies have investigated the association of genetic risk score (GRS) with detection of adenomatous polyps at screening colonoscopy. Methods: We randomly selected 1,769 Caucasian subjects who underwent screening colonoscopy from the Genomic Health Initiative (GHI), a biobank of NorthShore University HealthSystem. Outcomes from initial screening colonoscopy were recorded. Twenty-two CRC risk-associated SNPs were obtained from the Affymetrix™ SNP array and used to calculate an odds ratio (OR)-weighted and population-standardized GRS. Subjects with GRS of <0.5, 0.5-1.5, and >1.5 were categorized as low, average and elevated risk.Results: Among 1,769 subjects, 520 (29%) had 1 or more adenomatous polyps. GRS was significantly higher in subjects with adenomatous polyps than those without; mean (95% confidence interval) was 1.02 (1.00-1.05) and 0.97 (0.95-0.99), respectively, p<0.001. The association remained significant after adjusting for age, gender, body mass index, and family history, p<0.001. The detection rate of adenomatous polyps was 10.8%, 29.0% and 39.7% in subjects with low, average and elevated GRS, respectively, p-trend <0.001. Higher GRS was also associated with early age diagnosis of adenomatous polyps, p<0.001. In contrast, positive family history was not associated with risk and age of adenomatous polyps.Conclusions: GRS was significantly associated with adenomatous polyps in subjects undergoing screening colonoscopy. This result may help in stratifying average risk patients and facilitating personalized colonoscopy screening strategies.


Author(s):  
Juliana X. M. Cerqueira ◽  
Päivi Saavalainen ◽  
Kalle Kurppa ◽  
Pilvi Laurikka ◽  
Heini Huhtala ◽  
...  

AbstractThe phenotype of coeliac disease varies considerably for incompletely understood reasons. We investigated whether established coeliac disease susceptibility variants (SNPs) are individually or cumulatively associated with distinct phenotypes. We also tested whether a polygenic risk score (PRS) based on genome-wide associated (GWA) data could explain the phenotypic variation. The phenotypic association of 39 non-HLA coeliac disease SNPs was tested in 625 thoroughly phenotyped coeliac disease patients and 1817 controls. To assess their cumulative effects a weighted genetic risk score (wGRS39) was built, and stratified by tertiles. In our PRS model in cases, we took the summary statistics from the largest GWA study in coeliac disease and tested their association at eight P value thresholds (PT) with phenotypes. Altogether ten SNPs were associated with distinct phenotypes after correction for multiple testing (PEMP2 ≤ 0.05). The TLR7/TLR8 locus was associated with disease onset before and the SH2B3/ATXN2, ITGA4/UBE2E3 and IL2/IL21 loci after 7 years of age. The latter three loci were associated with a more severe small bowel mucosal damage and SH2B3/ATXN2 with type 1 diabetes. Patients at the highest wGRS39 tertiles had OR > 1.62 for having coeliac disease-related symptoms during childhood, a more severe small bowel mucosal damage, malabsorption and anaemia. PRS was associated only with dermatitis herpetiformis (PT = 0.2, PEMP2 = 0.02). Independent coeliac disease-susceptibility loci are associated with distinct phenotypes, suggesting that genetic factors play a role in determining the disease presentation. Moreover, the increased number of coeliac disease susceptibility SNPs might predispose to a more severe disease course.


2018 ◽  
Vol 111 (2) ◽  
pp. 146-157 ◽  
Author(s):  
Stephanie L Schmit ◽  
Christopher K Edlund ◽  
Fredrick R Schumacher ◽  
Jian Gong ◽  
Tabitha A Harrison ◽  
...  

Abstract Background Previous genome-wide association studies (GWAS) have identified 42 loci (P < 5 × 10−8) associated with risk of colorectal cancer (CRC). Expanded consortium efforts facilitating the discovery of additional susceptibility loci may capture unexplained familial risk. Methods We conducted a GWAS in European descent CRC cases and control subjects using a discovery–replication design, followed by examination of novel findings in a multiethnic sample (cumulative n = 163 315). In the discovery stage (36 948 case subjects/30 864 control subjects), we identified genetic variants with a minor allele frequency of 1% or greater associated with risk of CRC using logistic regression followed by a fixed-effects inverse variance weighted meta-analysis. All novel independent variants reaching genome-wide statistical significance (two-sided P < 5 × 10−8) were tested for replication in separate European ancestry samples (12 952 case subjects/48 383 control subjects). Next, we examined the generalizability of discovered variants in East Asians, African Americans, and Hispanics (12 085 case subjects/22 083 control subjects). Finally, we examined the contributions of novel risk variants to familial relative risk and examined the prediction capabilities of a polygenic risk score. All statistical tests were two-sided. Results The discovery GWAS identified 11 variants associated with CRC at P < 5 × 10−8, of which nine (at 4q22.2/5p15.33/5p13.1/6p21.31/6p12.1/10q11.23/12q24.21/16q24.1/20q13.13) independently replicated at a P value of less than .05. Multiethnic follow-up supported the generalizability of discovery findings. These results demonstrated a 14.7% increase in familial relative risk explained by common risk alleles from 10.3% (95% confidence interval [CI] = 7.9% to 13.7%; known variants) to 11.9% (95% CI = 9.2% to 15.5%; known and novel variants). A polygenic risk score identified 4.3% of the population at an odds ratio for developing CRC of at least 2.0. Conclusions This study provides insight into the architecture of common genetic variation contributing to CRC etiology and improves risk prediction for individualized screening.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Michael J. Northcutt ◽  
Zhuqing Shi ◽  
Michael Zijlstra ◽  
Ayush Shah ◽  
Siqun Zheng ◽  
...  

Abstract Background Single nucleotide polymorphism (SNP)-based polygenic risk scoring is predictive of colorectal cancer (CRC) risk. However, few studies have investigated the association of genetic risk score (GRS) with detection of adenomatous polyps at screening colonoscopy. Methods We randomly selected 1769 Caucasian subjects who underwent screening colonoscopy from the Genomic Health Initiative (GHI), a biobank of NorthShore University HealthSystem. Outcomes from initial screening colonoscopy were recorded. Twenty-two CRC risk-associated SNPs were obtained from the Affymetrix™ SNP array and used to calculate an odds ratio (OR)-weighted and population-standardized GRS. Subjects with GRS of < 0.5, 0.5–1.5, and > 1.5 were categorized as low, average and elevated risk. Results Among 1,769 subjects, 520 (29%) had 1 or more adenomatous polyps. GRS was significantly higher in subjects with adenomatous polyps than those without; mean (95% confidence interval) was 1.02 (1.00–1.05) and 0.97 (0.95–0.99), respectively, p < 0.001. The association remained significant after adjusting for age, gender, body mass index, and family history, p < 0.001. The detection rate of adenomatous polyps was 10.8%, 29.0% and 39.7% in subjects with low, average and elevated GRS, respectively, p-trend < 0.001. Higher GRS was also associated with early age diagnosis of adenomatous polyps, p < 0.001. In contrast, positive family history was not associated with risk and age of adenomatous polyps. Conclusions GRS was significantly associated with adenomatous polyps in subjects undergoing screening colonoscopy. This result may help in stratifying average risk patients and facilitating personalized colonoscopy screening strategies.


2020 ◽  
pp. jmedgenet-2020-107286
Author(s):  
Jun Wei ◽  
Zhuqing Shi ◽  
Rong Na ◽  
W Kyle Resurreccion ◽  
Chi-Hsiung Wang ◽  
...  

BackgroundSNP-based polygenic risk scores have recently been adopted in the clinic for risk assessment of some common diseases. Their validity is supported by a consistent trend between their percentile rank and disease risk in populations. However, for clinical use at the individual level, the reliability of score values is necessary considering they are directly used to calculate remaining lifetime risk.ObjectivesWe assessed the reliability of polygenic score values to estimate prostate cancer (PCa), breast cancer (BCa) and colorectal cancer (CRC) risk in three incident cohorts from the UK Biobank (n>500 000).MethodsCancer-specific Genetic Risk Score (GRS), a well-established population-standardised polygenic risk score, was calculated.ResultsA systematic bias was found between estimated risks (GRS values) and observed risks; β (95% CI) was 0.67 (0.58–0.76), 0.74 (0.65–0.84) and 0.82 (0.75–0.89), respectively, for PCa, BCa and CRC, all significantly lower than 1.00 (perfect calibration), p<0.001. After applying a correction factor derived from a training data set, the β for corrected GRS values in an independent testing data set were 1.09 (1.05–1.13), 1.00 (0.88–1.12) and 1.08 (0.96–1.21), respectively, for PCa, BCa and CRC.ConclusionAssessing the calibration of polygenic risk scores is necessary and feasible to ensure their reliability prior to clinical implementation.


2020 ◽  
Author(s):  
Michael Northcutt ◽  
Zhuqing Shi ◽  
Michael Zijlstra ◽  
Ayush Shah ◽  
Siqun Zheng ◽  
...  

Abstract Background: SNP-based polygenic risk scoring is predictive of colorectal cancer (CRC) risk. However, few studies have investigated the association of genetic risk score (GRS) with detection of adenomatous polyps at screening colonoscopy. Methods: We randomly selected 1,769 Caucasian subjects who underwent screening colonoscopy from the Genomic Health Initiative (GHI), a biobank of NorthShore University HealthSystem. Outcomes from initial screening colonoscopy were recorded. Twenty-two CRC risk-associated SNPs were obtained from the Affymetrix™ SNP array and used to calculate an odds ratio (OR)-weighted and population-standardized GRS. Subjects with GRS of <0.5, 0.5-1.5, and >1.5 were categorized as low, average and elevated risk.Results: Among 1,769 subjects, 520 (29%) had 1 or more adenomatous polyps. GRS was significantly higher in subjects with adenomatous polyps than those without; mean (95% confidence interval) was 1.02 (1.00-1.05) and 0.97 (0.95-0.99), respectively, p<0.001. The association remained significant after adjusting for age, gender, body mass index, and family history, p<0.001. The detection rate of adenomatous polyps was 10.8%, 29.0% and 39.7% in subjects with low, average and elevated GRS, respectively, p-trend <0.001. Higher GRS was also associated with early age diagnosis of adenomatous polyps, p<0.001. In contrast, positive family history was not associated with risk and age of adenomatous polyps.Conclusions: GRS was significantly associated with adenomatous polyps in subjects undergoing screening colonoscopy. This result may help in stratifying average risk patients and facilitating personalized colonoscopy screening strategies.


Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1645-P
Author(s):  
JOHANNE TREMBLAY ◽  
REDHA ATTAOUA ◽  
MOUNSIF HALOUI ◽  
RAMZAN TAHIR ◽  
CAROLE LONG ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 304-OR
Author(s):  
MICHAEL L. MULTHAUP ◽  
RYOSUKE KITA ◽  
NICHOLAS ERIKSSON ◽  
STELLA ASLIBEKYAN ◽  
JANIE SHELTON ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document