scholarly journals Effects of palate depth, modified arm shape, and anchor screw on rapid maxillary expansion: a finite element analysis

2014 ◽  
Vol 37 (2) ◽  
pp. 188-193 ◽  
Author(s):  
Yosuke Matsuyama ◽  
Mitsuru Motoyoshi ◽  
Niina Tsurumachi ◽  
Noriyoshi Shimizu
Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2020 ◽  
Vol 10 (22) ◽  
pp. 8261
Author(s):  
Ewa Zawiślak ◽  
Anna Olejnik ◽  
Roman Frątczak ◽  
Rafał Nowak

The analysis aimed at studying stresses reduced according to Huber’s hypothesis and displacement patterns at selected sites of the facial skeleton using a tooth-borne appliance in surgically assisted rapid maxillary expansion. Five different variants of osteotomy of the midface and a variant without surgical intervention were compared to determine the best model for making an incision in the maxilla. The finite element analysis (FEA) was used for the study. Five osteotomy variants and a variant without osteotomy were modelled using a tooth-borne appliance on a facial skeleton model of a 23-year-old woman with skeletal malocclusion. The finite element mesh was constructed based on the geometry imported into the ANSYS 15.0 (Swanson Analysis System of USA) software, in which calculations were performed using the finite element analysis. Stress distributions and displacement patterns along the X, Y and Z axes are presented for each osteotomy variant with the expansion of the tooth-borne appliance at a level of 0.5 mm. As a result of the analysis it was found that osteotomy of the palatal suture in conjunction with Le Fort I osteotomy has the biggest impact on the course of maxillary expansion. If no osteotomy is performed, an increase in stresses reduced according to Huber occurs in the entire facial skeleton with a simultaneous absence of maxillary expansion.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Priyank Rai ◽  
Dhiraj Garg ◽  
Tulika Tripathi ◽  
Anup Kanase ◽  
Gayatri Ganesh

Abstract Background Although, the outcomes and changes in the maxillofacial complex after the application of intraoral bone anchored Class III elastics, have been reported by multiple clinical studies, there was no finite element study to assess and evaluate the stress pattern and displacement on maxillomandibular complex with bimaxillary anchorage. The present study aims to evaluate the biomechanical effects on maxillomandibular complex of Skeletally anchored Class III elastics with varying angulations using the 3D finite element analysis. Methodology Two 3-dimensional analytical models were developed using the Mimics 8.11 (Materialise: Leuven, Belgium) and ANSYS software Version 12.1 (ANSYS Inc, Canonsburg, PA, USA) from sequential computed tomography images taken from a Skeletal Class III subject. The models were meshed into 465,091 tetrahedral elements and 101,247 nodes. Intraoral mechanics for skeletally anchored maxillary protraction (I-SAMP) were applied on two models i.e. A and B (without and with maxillary expansion respectively) between miniplates on maxilla and mandible on both right and left sides with three different angulations of forces—10°, 20° and 30°). Results Although the craniomaxillary complex in both the models (A and B) displaced forward while demonstrating rotations in opposite directions, the displacements and rotations decreased gradually with the increase of the angle of load application from 10° to 30°. The mandible rotated clockwise in both the simulations, but the displacement of mandibular surface landmarks was higher in Simulation A. However, the antero-inferior displacement of the glenoid fossa was higher in Simulation B than in A. Conclusion Significant displacement of maxillofacial sutures and structures was witnessed with I-SAMP with maxillary expansion and Class III elastics for correction of Skeletal Class III with maxillary retrognathism. Thus, I-SAMP with maxillary expansion is a desired protocol for treatment of maxillary retrognathism. However, the prescribed angulation of the Class III elastics should be as low as possible to maximise the desired effects.


2017 ◽  
Vol 15 (3) ◽  
pp. 517 ◽  
Author(s):  
Sergei Bosiakov ◽  
Anastasiya Vinokurova ◽  
Andrei Dosta

Rapid maxillary expansion is employed for the treatment of cross-bite and deficiency of transversal dimension of the maxilla in patients with and without cleft of palate and lip. For this procedure, generally, different orthodontic appliances and devices generating significant transversal forces are used. The aim of this study is the finite-element analysis of stresses and displacements of the skull without palate cleft and the skull with unilateral and bilateral cleft after activation of the Hyrax orthodontic device. Two different constructions of the orthodontic device Hyrax with different positions of the screw relative palate are considered. In the first case, the screw is in the occlusal horizontal plane, and in the other, the screw is located near the palate. Activation of the orthodontic device corresponds to the rotation of the screw on one-quarter turn. It is established that the screw position significantly affects the distributions of stresses in skull and displacements of the cranium without palate cleft and with unilateral or bilateral palate cleft. Stresses in the bone structures of the craniums without cleft and with cleft are transferred from the maxilla to the pterygoid plate and pharyngeal tubercle if the screw displaces from the occlusal plane to the palate. Depending on the construction of the orthodontic appliance, the maxilla halves in the transversal plane are unfolded or the whole skull is entirely rotated in the sagittal plane. The stresses patterns and displacements of the skull with bilateral palate cleft are almost unchanged after activation of the orthodontic devices with different positions of the screw, only magnitudes of stresses and displacements are changed. The obtained results can be used for design of orthodontic appliances with the Hyrax screw, as well as for planning of osteotomies during the surgical assistance of the rapid maxillary expansion.


2016 ◽  
Vol 150 (2) ◽  
pp. 313-323 ◽  
Author(s):  
Haofu Lee ◽  
Alan Nguyen ◽  
Christine Hong ◽  
Paul Hoang ◽  
John Pham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document