scholarly journals Left atrial strain in cardiac amyloidosis

2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
A Aimo ◽  
I Fabiani ◽  
V Spini ◽  
V Chubuchny ◽  
E M Pasanisi ◽  
...  

Abstract Background Patients with cardiac amyloidosis (CA) display an enlarged and dysfunctional left atrium (LA), because of the effects of left ventricular (LV) diastolic and then systolic dysfunction, as well as the amyloid infiltration of LA wall. A single study reported impaired LA strain in CA, but differences among amyloid light-chain (AL) and transthyretin (ATTR) CA and the correlates of reduced LA strain have not been characterized. Methods We evaluated 426 consecutive patients undergoing a screening for suspected CA in 2 tertiary referral centres. Among them, 262 (61%) were diagnosed with CA (n=117 AL-CA, n=145 ATTR-CA). We measured peak atrial longitudinal strain (PALS) and peak atrial contraction strain (PACS) from 4- and 2-chamber (4C, 2C) views, and correlated them with maximum and minimum LA volumes, E/e' ratio, and LV global longitudinal strain (GLS). Results LA strain was much more severely impaired in patients with ATTR-CA than those without CA, and to a lesser extent than those with AL-CA (Figure). LA volumes were larger in patients with ATTR-CA than those without CA (maximal LA volume, p=0.042; minimal LA volume, p<0.001), and those with AL-CA (both volumes, p<0.001). LA strain values were more closely correlated with minimal than maximal LA volumes, and patients with AL-CA displayed stronger correlations than those with ATTR-CA or without CA; for example, Spearman's rho values for 4C-PALS vs. minimal LA volume were 0.595, 0.481, and 0.462, respectively (all p<0.001). Furthermore, LA strain correlated with E/e' in patients with AL-CA, but not in those with ATTR-CA: 4C-PALS vs. E/e', rho 0.406, p=0.001 (AL-CA), p=0.401 (ATTR-CA), and p=0.097 (no CA). Finally, LA strain correlated most closely with LV GLS in patients with AL-CA: 4C-PALS vs. LV GLS, rho 0.431, p<0.001 (AL-CA), rho 0.401, p<0.001 (ATTR-CA), rho 0.219, p=0.042 (no CA). Conclusions LA volume increase and reduced LA strain is particularly prominent in patients with ATTR-CA. Patients with AL-CA seem to display closer relationships between LA strain, size and haemodynamic load, possibly reflecting the most acute disease course, and lower time for amyloid deposition in the LA wall. FUNDunding Acknowledgement Type of funding sources: None.

2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
N Borrelli ◽  
M Panebianco ◽  
G Di Salvo ◽  
S Alfieri ◽  
D De Angelis ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background In heart transplant (HT) patients, high LV filling pressure is considered a marker of rejection and predictive of increased mortality. Purpose Our study aims to correlate echocardiographic parameters to left-ventricular end diastolic pressure (LVEDP) at cardiac catheterization in transplant recipients. Methods This was a retrospective study of 50 HT patients (54% male) who underwent heart transplantation in paediatric age (0-18 years-old). The echocardiographic evaluation was performed within three weeks from the left heart cardiac catheterization. From apical view, we measured: left atrial strain (LAS) indices [atrial contraction (εac), LA filling (reservoir phase, εres), and LA passive emptying (conduit phase, εcon)], mitral doppler E/A, E/e’, global longitudinal strain (LVGLS) and strain rate. Results Median LVEDP was 10 mmHg (IQR 8.25-12 mmHg) and had the best correlation with decreased εres (r= -0.56, p < 0.0001). The other LAS indices and mitral E/e’ correlated less strongly with LVEDP (εac: r= -0.42, p = 0.004; εcon: r= -0.55, p= 0.0001; E/e’: r = 0.28, p = 0.04). E/A, LVGLS and LVGLS rate did not correlate with LVEDP. By ROC analysis, εres ≤ 16.3% was predictive of elevated LVEDP with a good sensitivity (86%) and moderate specificity (57%). A multivariate analysis produced εres as the best predictor (p = 0.0001) for high LVEDP. Conclusions Non-invasive εres seems to be a good surrogate of invasive LVEDP. Monitoring εres may be of value in HT patients to survey for rejection and graft disfunction. Abstract Figure. Scatter plots LVEDP-εres correlation


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Julia M Simkowski ◽  
Michael Jiang ◽  
NADIA El HANGOUCHE ◽  
Jeesoo Lee ◽  
Milica Marion ◽  
...  

Introduction: Relative apical longitudinal strain (RALS) is defined as (average apical LS/(average basal & mid-ventricular LS)). A threshold of 2 has been found to have high sensitivity and specificity for differentiating cardiac amyloidosis (CA) from other causes of left ventricular hypertrophy (LVH). This threshold was developed using General Electric (GE) software, and its reproducibility among different software vendors is unknown. Hypothesis: In patients with CA, regional segmental LS patterns and relative apical longitudinal strain will vary among software vendors. Methods: Speckle-tracking echocardiography was retroactively performed by an experienced technician on two patient cohorts, CA (n=52) and LVH (n=52), using software from two independent vendors: EchoPAC (GE Medical Systems) and TomTEC (TOMTEC Imaging Systems GMBH). For each vendor and patient, strain values for the basal, mid, and apical segments were averaged to obtain three regional LS values which were then used to calculate global longitudinal strain (GLS) and RALS. Results: EchoPAC demonstrated greater average apical LS (-16.5±5.7 vs -13.1±6.6, p<0.001) and RALS (2.1±0.9 vs 1.7±0.7, p<0.001) compared to TomTEC. Bland-Altman analysis yielded a mean bias of -0.4 with limit of agreement 2.2 (p<0.001) in RALS between the two vendors. ROC curve analysis using a RALS cutoff of 2 to differentiate CA from the overall control group showed similarly high specificity (EchoPAC 85%, TomTEC 83%) between vendors but lower sensitivity for TomTEC (23% vs 45%) (Figure 1). LVH subgroup analysis showed similar comparisons. Overall difference in area-under-curve (AUC) was significant (AUC = 0.78 EchoPAC vs AUC = 0.52 TomTEC, p < 0.001). Conclusions: Software measurements of regional LS and thus RALS vary between vendors. Further efforts are needed for intervendor regional strain fidelity. For now, different RALS thresholds to diagnose CA may be needed for various vendors.


2020 ◽  
Vol 14 ◽  
pp. 117954682093001
Author(s):  
Manal F Elshamaa ◽  
Fatma A Mostafa ◽  
Inas AES Sad ◽  
Ahmed M Badr ◽  
Yomna AEM Abd Elrahim

Background: Cardiac systolic dysfunction was potentially found in adult patients with end-stage renal disease (ESRD) who have preserved left ventricular ejection fraction (EF%). In children with ESRD, little data are available on early changes in myocardial function. This study aimed to detect the early changes in myocardial mechanics in pediatric patients with ESRD using speckle tracking echocardiography (STE). Methods: Thirty ESRD children receiving hemodialysis (HD) and30 age-matched controls were prospectively studied. Patients underwent echocardiographic studies before and after HD. Left ventricular longitudinal strain (LS), circumferential strain (CS), and radial strain (RS) myocardial deformation parameters (strain, strain rate) were evaluated by STE. Results: The LS was significantly reduced in pre-HD and post-HD patients compared with controls ( P = .000). Controls showed the highest global longitudinal strain. The RS measurements did not differ significantly among the studied groups except for the inferior segment that is significantly reduced after HD compared with controls ( P < .05). The CS was significantly reduced in pre-HD and post-HD patients compared with controls at the lateral and posterior segments ( P = .035 and P = .013, respectively). Conclusion: Speckle-tracking echocardiography might detect early changes in myocardial mechanics in children with ESRD with preserved EF%.


2020 ◽  
Vol 21 (Supplement_1) ◽  
Author(s):  
R Ramos Polo ◽  
S Moral Torres ◽  
C Tiron De Llano ◽  
M Morales Fornos ◽  
J M Frigola Marcet ◽  
...  

Abstract INTRODUCTION Differential diagnosis by echocardiography between cardiac amyloidosis (CA) and hypertrophic cardiomyopathy (HCM) is based on the evaluation of left ventricular ejection fraction (LVEF) and global longitudinal strain (GLS) of the entire myocardial wall. Nevertheless, histopathological studies describe a higher involvement of subendocardial tissue in CA. The aim of our study was to evaluate whether the subanalysis of the GLS by layers (subendocardial and subepicardial) and segments (apical and basal) can provide further information. METHODS Retrospective study including 33 consecutive patients diagnosed with CA (with histological confirmation and imaging tests) or HCM by established criteria. Advanced myocardial deformation analysis software was used for both subendocardial and subepicardial evaluation of the left ventricle wall by transthoracic echocardiography. RESULTS Seventeen patients (52%) had CA and sixteen (48%) had HCM. Differences were observed in LVEF (52.9 ± 10.9% vs 62.4 ±5.0%; p = 0.004), but not in the analysis of the entire wall GLS (-12.3 ± 4.9 vs -13.4 ± 2.8; p = 0.457) nor in the LVEF/GLS ratio (4.7 ± 1.4 vs 4.8 ± 1.1; p = 0.718). In the layered analysis there was no difference in subendocardial GLS (-16.2 ± 5.0 vs -16.4 ± 3.2%; p = 0.916) or subepicardial GLS (-11.7 ± 4.1 vs -11.6 ±2.7%; p = 0.945); however, the increase in GLS from base to apex was greater for CA than for HCM both at subepicardial level (increase: 101% vs 16%; p = 0.006) and subendocardial level (increase: 242% vs 114%; p = 0.006), with inversion of the greatest values for each group (Fig. 1).The ratio (apical GLS/basal GLS) was diagnostic predictor of CA (area under the curve = 86%; p = 0.002): a value &gt;2 presented a sensitivity of 84% and a specificity of 85% for the diagnosis of CA. CONCLUSIONS CA presents an impairment of both subendocardial and subepicardial deformation in transthoracic echocardiography. These patterns provide additional information on differential diagnosis with HCM. Abstract P940 Figure. Subendo vs subepicardial mean values


2020 ◽  
Author(s):  
Sameh Samir Raafat ◽  
Nour Eldin M. Nazmy ◽  
Islam M. Bastawy ◽  
Yasser A. Abdellatif

Abstract Background: Type 2 diabetes mellitus (T2DM) insidiously affects the myocardium with subsequent cardiomyopathy, it also pathologically involves the microvascular bed of the kidney reflected by albuminuria. This study aimed to investigate the relation between albuminuria and subclinical left ventricular (LV) systolic dysfunction in asymptomatic normotensive patients with T2DM assessed by two-dimensional (2D) speckle tracking echocardiography.Methods and results Sixty normotensive patients with T2DM, within 5 years of initial diagnosis, receiving conventional oral antidiabetic medications were included and subdivided into 2 subgroups, each including thirty patients according to the presence of albuminuria, together with thirty healthy control subjects all underwent full echocardiographic examination including left ventricular (LV) regional and global longitudinal strain (GLS) measurements. Laboratory tests including serum creatinine, glycated hemoglobin (HbA1C) and albumin creatinine ratio (ACR) were withdrawn for the three groups. There was a significant reduction in average peak systolic LV global longitudinal strain (GLS) in patients with T2DM when compared to control group (-16.18 ± 2.78% versus -18.13 ± 2.86%, P<0.001), however there was no significant difference in average peak systolic LV GLS between both diabetic subgroups (-15.57 ± 2.77% in subgroup with albuminuria versus -16.79 ± 2.70% in subgroup without albuminuria, p=0.077). Moreover, there was a significant correlation between ACR and reduction of GLS in patients with T2DM and albuminuria (r =0.38, P=0.003). However, this correlation was absent in patients with T2DM without albuminuria (r=0.107, P=0.573). Conclusion: Patients with type 2 diabetes mellitus (T2DM) have subclinical LV systolic dysfunction despite normal ejection fraction through reduction of average peak systolic LV GLS that is correlated with albumin creatinine ratio in patients with T2DM and albuminuria.


Medicina ◽  
2021 ◽  
Vol 57 (12) ◽  
pp. 1372
Author(s):  
Gheorghe Stoichescu-Hogea ◽  
Florina Nicoleta Buleu ◽  
Ruxandra Christodorescu ◽  
Raluca Sosdean ◽  
Anca Tudor ◽  
...  

Background: Contribution of global and regional longitudinal strain (GLS) for clinical assessment of patients with heart failure with preserved ejection fraction (HFpEF) is not well established. We sought to evaluate subclinical left ventricular dysfunction secondary to coronary artery disease (CAD) in HFpEF patients compared with hypertensive patients and age-matched healthy subjects. Material and methods: This was a retrospective study that included 148 patients (group 1 = 62 patients with HFpEF, group 2 = 46 hypertensive patients, and group 3 = 40 age-matched control subjects). Peak systolic segmental, regional (basal, mid, and apical), and global longitudinal strain were assessed for each study group using two-dimensional speckle-tracking echocardiography (2D-STE). Results: GLS values presented statistically significant differences between the three groups (p < 0.001); markedly increased values (more negative) were observed in the control group (−20.2 ± 1.4%) compared with HTN group values (−18.4 ± 3.0%, p = 0.031) and with HFpEF group values (−17.6 ± 2.3%, p < 0.001). The correlation between GLS values and HTN stages was significant, direct, and average (Spearman coefficient rho = 0.423, p < 0.001). GLS had the greatest ability to detect patients with HFpEF when HFpEF + CAD + HTN diastolic dysfunction (n = 30) + CON diastolic dysfunction (n = 2) from HFpEF + CAD + HTN + CON was analyzed. (optimal GLS limit of −19.35%, area under curve = 0.833, p < 0.001). Conclusions: Global longitudinal strain can be used for clinical assessment in differentiating coronary and hypertensive patients at higher risk for development of systolic dysfunction.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Peter Huntjens ◽  
Kathleen Zhang ◽  
Yuko Soyama ◽  
Maria Karmpalioti ◽  
Daniel Lenihan ◽  
...  

Introduction: Light chain cardiac amyloidosis (AL) has a variable but usually poor prognosis. Left ventricular (LV) function measures including LV strain imaging for global longitudinal strain (GLS) have shown clinically prognostic value in AL. However, the utility of novel left atrial (LA) strain imaging and its associations with LV disease remains unclear. Hypothesis: LA strain is of additive prognostic value to GLS in AL. Methods: We included 99 consecutive patients with AL. Cardiac amyloidosis either confirmed by endocardial biopsy (25%) or by non-cardiac tissue biopsy and imaging data supportive of cardiac amyloidosis. Peak LA reservoir strain was calculated as an average of peak longitudinal strain from apical 2- and 4-chamber views. GLS and apical sparing ratio were assessed using the 3 standard apical views. All-cause mortality was tracked over a median of 5 years. Results: Echocardiographic GLS and peak longitudinal LA strain were feasible in 96 (97%) and 86 (87%) of patients, respectively. There were 48 AL patients who died during follow-up. Patients with low GLS (GLS < median; 10.3% absolute values) had worse prognosis than patients with high GLS group (p<0.001). Although peak longitudinal LA strain was correlated with GLS (R=0.65 p<0.001), peak longitudinal LA strain had additive prognostic value. AL patients with low GLS and low Peak LA strain (<13.4%) had a 8.3-fold increase in mortality risk in comparison to patients with high GLS (95% confidence interval: 3.84-18.03; p<0.001). Multivariable analysis showed peak longitudinal LA strain was significantly and independently associated with survival after adjusting for clinical and echocardiographic covariates (p<0.01). Conclusions: Peak longitudinal LA strain was additive to LV GLS in predicting prognosis in patients with biopsy confirmed AL amyloidosis. LA strain imaging has potential clinical utility in patients with AL cardiac amyloidosis.


Sign in / Sign up

Export Citation Format

Share Document