Expression Quantitative Trait Locus (eQTL) analysis in human heart for elucidation of causal genes at loci identified in genome-wide association studies

2013 ◽  
Vol 34 (suppl 1) ◽  
pp. 2601-2601
Author(s):  
M. E. Adriaens ◽  
T. T. Koopmann ◽  
P. D. Moerland ◽  
M. L. Westerveld ◽  
R. F. Marsman ◽  
...  
2019 ◽  
Vol 35 (21) ◽  
pp. 4327-4335
Author(s):  
Meiyue Wang ◽  
Shizhong Xu

AbstractMotivationGenomic scanning approaches that detect one locus at a time are subject to many problems in genome-wide association studies and quantitative trait locus mapping. The problems include large matrix inversion, over-conservativeness for tests after Bonferroni correction and difficulty in evaluation of the total genetic contribution to a trait’s variance. Targeting these problems, we take a further step and investigate a multiple locus model that detects all markers simultaneously in a single model.ResultsWe developed a sparse Bayesian learning (SBL) method for quantitative trait locus mapping and genome-wide association studies. This new method adopts a coordinate descent algorithm to estimate parameters (marker effects) by updating one parameter at a time conditional on current values of all other parameters. It uses an L2 type of penalty that allows the method to handle extremely large sample sizes (>100 000). Simulation studies show that SBL often has higher statistical powers and the simulated true loci are often detected with extremely small P-values, indicating that SBL is insensitive to stringent thresholds in significance testing.Availability and implementationAn R package (sbl) is available on the comprehensive R archive network (CRAN) and https://github.com/MeiyueComputBio/sbl/tree/master/R%20packge.Supplementary informationSupplementary data are available at Bioinformatics online.


Author(s):  
Mike A Nalls ◽  
Cornelis Blauwendraat ◽  
Lana Sargent ◽  
Dan Vitale ◽  
Hampton Leonard ◽  
...  

Abstract Previous research using genome wide association studies has identified variants that may contribute to lifetime risk of multiple neurodegenerative diseases. However, whether there are common mechanisms that link neurodegenerative diseases is uncertain. Here, we focus on one gene, GRN, encoding progranulin, and the potential mechanistic interplay between genetic risk, gene expression in the brain and inflammation across multiple common neurodegenerative diseases. We utilized genome wide association studies, expression quantitative trait locus mapping and Bayesian colocalization analyses to evaluate potential causal and mechanistic inferences. We integrate various molecular data types from public resources to infer disease connectivity and shared mechanisms using a data driven process. Expression quantitative trait locus analyses combined with genome wide association studies identified significant functional associations between increasing genetic risk in the GRN region and decreased expression of the gene in Parkinson’s, Alzheimer’s and amyotrophic lateral sclerosis. Additionally, colocalization analyses show a connection between blood based inflammatory biomarkers relating to platelets and GRN expression in the frontal cortex. GRN expression mediates neuroinflammation function related to multiple neurodegenerative diseases. This analysis suggests shared mechanisms for Parkinson’s, Alzheimer’s and amyotrophic lateral sclerosis.


2018 ◽  
Author(s):  
Zhou Shaoqun ◽  
Karl A. Kremling ◽  
Bandillo Nonoy ◽  
Richter Annett ◽  
Ying K. Zhang ◽  
...  

One Sentence SummaryHPLC-MS metabolite profiling of maize seedlings, in combination with genome-wide association studies, identifies numerous quantitative trait loci that influence the accumulation of foliar metabolites.AbstractCultivated maize (Zea mays) retains much of the genetic and metabolic diversity of its wild ancestors. Non-targeted HPLC-MS metabolomics using a diverse panel of 264 maize inbred lines identified a bimodal distribution in the prevalence of foliar metabolites. Although 15% of the detected mass features were present in >90% of the inbred lines, the majority were found in <50% of the samples. Whereas leaf bases and tips were differentiated primarily by flavonoid abundance, maize varieties (stiff-stalk, non-stiff-stalk, tropical, sweet corn, and popcorn) were differentiated predominantly by benzoxazinoid metabolites. Genome-wide association studies (GWAS), performed for 3,991 mass features from the leaf tips and leaf bases, showed that 90% have multiple significantly associated loci scattered across the genome. Several quantitative trait locus hotspots in the maize genome regulate the abundance of multiple, often metabolically related mass features. The utility of maize metabolite GWAS was demonstrated by confirming known benzoxazinoid biosynthesis genes, as well as by mapping isomeric variation in the accumulation of phenylpropanoid hydroxycitric acid esters to a single linkage block in a citrate synthase-like gene. Similar to gene expression databases, this metabolomic GWAS dataset constitutes an important public resource for linking maize metabolites with biosynthetic and regulatory genes.


2020 ◽  
Vol 24 ◽  
pp. 100145 ◽  
Author(s):  
Mohsen Mohammadi ◽  
Alencar Xavier ◽  
Travis Beckett ◽  
Savannah Beyer ◽  
Liyang Chen ◽  
...  

2021 ◽  
Author(s):  
Alex N. Nguyen Ba ◽  
Katherine R. Lawrence ◽  
Artur Rego-Costa ◽  
Shreyas Gopalakrishnan ◽  
Daniel Temko ◽  
...  

Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of the observed heritability in many traits, allowing us to predict phenotype from genotype. However, constraints on power due to statistical confounders in large GWAS and smaller sample sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to causal genes, identify pleiotropic effects across multiple traits, and infer non-additive interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus (BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a budding yeast cross, two orders of magnitude larger than the previous state of the art. We use this panel to map the genetic basis of eighteen complex traits, finding that the genetic architecture of these traits involves hundreds of small-effect loci densely spaced throughout the genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central role, with thousands of interactions that provide insight into genetic networks. By dramatically increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of complex traits.Significance statementUnderstanding the genetic basis of important phenotypes is a central goal of genetics. However, the highly polygenic architectures of complex traits inferred by large-scale genome-wide association studies (GWAS) in humans stand in contrast to the results of quantitative trait locus (QTL) mapping studies in model organisms. Here, we use a barcoding approach to conduct QTL mapping in budding yeast at a scale two orders of magnitude larger than the previous state of the art. The resulting increase in power reveals the polygenic nature of complex traits in yeast, and offers insight into widespread patterns of pleiotropy and epistasis. Our data and analysis methods offer opportunities for future work in systems biology, and have implications for large-scale GWAS in human populations.


Sign in / Sign up

Export Citation Format

Share Document