Tornado-like flow in the Fontan circulation: insights from quantification and visualization of viscous energy loss rate using 4D flow MRI

2019 ◽  
Vol 40 (26) ◽  
pp. 2170-2170
Author(s):  
Friso M Rijnberg ◽  
Hans C van Assen ◽  
Mark G Hazekamp ◽  
Arno A W Roest
Author(s):  
Friso M Rijnberg ◽  
Joe F Juffermans ◽  
Mark G Hazekamp ◽  
Willem A Helbing ◽  
Hildo J Lamb ◽  
...  

Abstract Objectives To study flow-related energetics in multiple anatomical segments of the total cavopulmonary connection (TCPC) in Fontan patients from 4D flow MRI, and to study the relationship between adverse flow patterns and segment-specific energetics. Methods Twenty-six extracardiac Fontan patients underwent 4D flow MRI of the TCPC. A segmentation of the TCPC was automatically divided into 5 anatomical segments (conduit, superior vena cava, right/left pulmonary artery (PA) and the Fontan confluence). The presence of vortical flow in the PAs or Fontan confluence was qualitatively scored. Kinetic energy, viscous energy loss and vorticity were calculated from the 4D flow MRI velocity field and normalized for segment length and/or inflow. Energetics were compared between segments and the relationship between vortical flow and segment cross-sectional area (CSA) with segment-specific energetics was determined. Results Vortical flow in the LPA (n = 6) and Fontan confluence (n = 12) were associated with significantly higher vorticity (p = 0.001 and p = 0.015, respectively) and viscous energy loss rate (p = 0.046 and p = 0.04, respectively) compared to patients without vortical flow. The LPA and conduit segments showed the highest kinetic energy and viscous energy loss rate, while most favorable energetics were observed in the superior vena cava. Conduit CSA inversely correlated with kinetic energy (r= -0.614, p = 0.019) and viscous energy loss rate (r= -0.652, p = 0.011). Conclusions Vortical flow in the Fontan confluence and LPA associated with significantly increased viscous energy loss rate. 4D flow MRI derived energetics may be used as a screening tool for direct, MRI-based assessment of flow efficiency in the TCPC.


2019 ◽  
Vol 40 (5) ◽  
pp. 1093-1096 ◽  
Author(s):  
Daniel McLennan ◽  
Michal Schäfer ◽  
Max B. Mitchell ◽  
Gareth J. Morgan ◽  
Dunbar Ivy ◽  
...  

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
Z Dai ◽  
N Iguchi ◽  
I Takamisawa ◽  
M Takayama ◽  
M Nanasato ◽  
...  

Abstract Background Functional follow-up modalities of hypertrophic obstructive cardiomyopathy (HOCM) subjected to percutaneous transluminal septal myocardial ablation (PTSMA) are limited mainly to echocardiography and catheterization. Recent advancements in four-dimensional (4D) flow magnetic resonance imaging (MRI) have enabled us to assess patients from the perspective of fluid dynamics by visualising blood flow and calculating quantitative parameters such as wall shear stress and energy loss within cardiac chambers or blood vessels. Several reports have demonstrated that the intra-cardiac energy loss decreased along with improvement of cardiac function achieved by treatment of cardiac diseases. Whether changes in energy loss occur along with PTSMA in HOCM patients and the underlying mechanism remain unknown. Purpose This study sought to investigate the influence of PTSMA in patients with HOCM on energy loss in the left ventricle (LV) and aortic root measured by 4D flow MRI. Methods We retrospectively recruited HOCM patients who underwent PTSMA at a referral centre from May to November 2019. Patients who underwent 4D flow MRI both before and after PTSMA were included. We collected demographic and clinical data from electronic health records. MRI scans implemented two-dimensional phase-contrast imaging of the three-chamber plane with three-directional velocity, using a 1.5 T scanner. Furthermore, 4D blood flow analysis was performed on off-line saved data, using iTFlow version 1.9. We assessed energy loss in one cardiac cycle within the three-chamber plane of the LV and aortic root (area surrounded by the LV endocardium, sinotubular junction, and mitral annulus). Results This study finally included 12 patients, whose mean age was 66±12 years, and 5 (42%) of whom were men. The pressure gradient between the LV apex and ascending aorta was 81±32 mmHg before and 20±22 mmHg immediately after PTSMA (P<0.005, paired). Before PTSMA, 6 patients were in New York Heart Association functional class III and the other 6 in class II. However, after PTSMA, 10 patients improved to class I and 2 to class II. PTSMA reduced energy loss in one cardiac cycle within the three-chamber plane of the LV and aortic root, from 79±36 mJ/m to 55±19 mJ/m (P=0.001, paired). Conclusions PTSMA in patients with HOCM reduced energy loss within the LV and aortic root, indicating significant decrease with cardiac workload. Four-dimensional flow MRI of the three-chamber plane to assess energy loss within the LV and aortic root is a time-efficient and reproducible quantitative method to evaluate the effects of PTSMA. Given its non-invasive nature, it also enables to sequentially follow-up HOCM patients who underwent PTSMA. Periprocedural changes of energy loss Funding Acknowledgement Type of funding source: None


2018 ◽  
Vol 20 (3) ◽  
pp. 323-333 ◽  
Author(s):  
Vivian P Kamphuis ◽  
Mohammed S M Elbaz ◽  
Pieter J van den Boogaard ◽  
Lucia J M Kroft ◽  
Rob J van der Geest ◽  
...  

2018 ◽  
Vol 34 (6) ◽  
pp. 905-920 ◽  
Author(s):  
Vivian P. Kamphuis ◽  
Jos J. M. Westenberg ◽  
Roel L. F. van der Palen ◽  
Pieter J. van den Boogaard ◽  
Rob J. van der Geest ◽  
...  

2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Francesca Raimondi ◽  
Duarte Martins ◽  
Raluca Coenen ◽  
Elena Panaioli ◽  
Diala Khraiche ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document