Very high-power short-duration temperature-controlled ablation for pulmonary vein isolation: The Fast-and-Furious study

EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
CH Heeger ◽  
MS Sano ◽  
RMS Meyer-Saraei ◽  
CE Eitel ◽  
HL Phan ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Catheter ablation for atrial fibrillation (AF) treatment provides effective and durable PVI associated with encouraging clinical outcome. The novel QDot ablation catheter with Qmode + ablation mode (90W/4sec, Figure 1) offers the ability to possibly improve safety and decrease ablation procedure times. Aims We aim to evaluate safety and efficacy of the very high-power short-duration (vHP-SD) temperature-controlled radiofrequency (RF) ablation Qmode + mode for pulmonary vein isolation (PVI) utilizing the novel QDot micro ablation catheter. The data was compared to conventional power-controlled ablation index (AI) guided PVI. Methods Twenty-five consecutive patients with paroxysmal or persistent AF were prospectively enrolled, underwent vHP-SD based PVI (vHP-SD group) and were compared to 25 consecutive patients treated with conventional CF-sensing catheters (control). Results All PVs were successfully isolated utilizing Qmode +. The total median RF ablation time was vHP-SD: 334 (282, 369) sec. vs control: 1567 (1250, 1756) sec. (p < 0.0001), the median procedure time was vHP-SD: 56 (48-62) vs. control: 104 (92-122) min (p < 0.0001). No differences in periprocedural complications were observed. Conclusions The novel Qmode + provides safe and effective PVI with impressive short RF time and short procedures times. Procedure time and RF time were substantial lower in the vHP-SD group. Abstract Figure 1

Author(s):  
Roland Tilz ◽  
Makoto Sano ◽  
Julia Vogler ◽  
Thomas Fink ◽  
Roza Meyer-Saraei ◽  
...  

Background: Catheter ablation for atrial fibrillation (AF) treatment provides effective and durable pulmonary vein isolation (PVI) and is associated with encouraging clinical outcome. A novel CF sensing temperature-controlled radiofrequency (RF) ablation catheter allows for very high-power short-duration (vHP-SD, 90W/4 seconds) ablation aiming a potentially safer, more effective and faster ablation. We thought to evaluate preliminary safety and efficacy of vHP-SD ablation for PVI utilizing a novel vHP-SD catheter. The data was compared to conventional power-controlled ablation index (AI) guided PVI utilizing conventional contact force (CF) sensing catheters. Methods and Results: Fifty-six patients with paroxysmal or persistent AF were prospectively enrolled in this study. Twenty-eight consecutive patients underwent vHP-SD based PVI (vHP-SD group) and were compared to 28 consecutive patients treated with conventional CF-sensing catheters utilizing the AI (control group). All PVs were successfully isolated using vHP-SD. The median RF ablation time for vHP-SD was 338 (IQR 286, 367) seconds vs control 1580 (IQR 1350, 1848) seconds (p<0.0001), the median procedure duration was vHP-SD 55 (IQR 48-60) minutes vs. control 105 (IQR 92-120) minutes (p<0.0001). No differences in periprocedural complications were observed. Conclusions: This preliminary data of the novel vHP-SD ablation mode provides safe and effective PVI. Procedure duration and RF ablation time were substantially shorter in the vHP-SD group in comparison to the control group.


2019 ◽  
Vol 5 (7) ◽  
pp. 778-786 ◽  
Author(s):  
Vivek Y. Reddy ◽  
Massimo Grimaldi ◽  
Tom De Potter ◽  
Johan M. Vijgen ◽  
Alan Bulava ◽  
...  

Author(s):  
Atsushi Suzuki ◽  
H. Immo Lehmann ◽  
Songyun Wang ◽  
Kay Parker ◽  
Kristi Monahan ◽  
...  

Introduction: The spatial thermodynamics of very high power-short duration (vHPSD) radiofrequency (RF) application during pulmonary vein isolation (PVI) in in-vivo model has not been well characterized. This study was conducted to investigate the distance-temperature relationship during vHPSD-RF ablation. Methods: PVI was performed using the vHPSD catheter with the settings of 90W, RF time of 4 sec and 15mL/min irrigation in a canine model. Catheter contact force (CF) of 10-20g was defined as ‘normal’ and CF >20g as ‘firm’ CF. Tissue temperature was monitored using thermocouples implanted at the surface of the left atrial-pulmonary vein junction, left phrenic nerve, and the luminal esophagus. PVI using a standard contact-force sensing catheter (SCF) (settings of 35W, 30sec and 30mL/min irrigation) was performed for comparison. Results: A total of 334 TC profiles in 4 animals was investigated. Time to maximum tissue temperature (MTT) (6.0sec [vHPSD/normal CF] vs. 30.5 sec [SCF/normal CF], p<0.001; 8.0sec [vHPSD/firm CF] vs. 24.0sec [SCF/firm CF], p=0.022) was shorter with vHPSD than in SCF groups. MTT within 10mm from catheter-tip was lower in vHPSD ablation with normal CF than using SCF ablation (median 41.9°C [interquartile-range; 40.2-46.1] vs. 49.5°C [45.9-56.2], p=0.013). The distance margin to keep the MTT below 39ºC, 42ºC, and 50ºC were 4.9mm, 4.2mm, and 3.4mm, respectively in the vHPDS group. This margin was larger (8.0mm, 6.6mm, and 4.6mm) in the SCF group. Conclusion: Our study underscores that vHPSD creates greater resistive heating than conventional catheter ablation.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
J Schreieck ◽  
D Heinzmann ◽  
C Scheckenbach ◽  
M Gawaz ◽  
M Duckheim

Abstract Funding Acknowledgements Type of funding sources: None. Introduction Local impedance (LI) drop can predict sufficient lesion formation during radiofrequency ablation (RF). Recently, a novel ablation catheter technology able to measure LI and contact force has been made available for clinical use. High power short duration (HPSD) RF ablation has been shown to be feasible for atrial fibrillation (AF) ablation with short procedure time. We used LI drop and plateau formation to guide duration of 50 Watt RF power applications for circumferential pulmonary vein isolation (PVI). Methods Consecutive patients with indication for de novo AF ablation (n = 32, age 65 ± 10 years) with paroxysmal (n = 16) or persistent (n = 16) AF underwent ultra high density 3D mapping of the left atrium and catheter ablation. Thereafter, ipsilateral PV encircling with 50 Watt RF-applications targeting an interlesion distance of ≤ 6mm and a contact force of 10-30g was performed. Duration of HPSD RF application between 7-15s was guided by impedance drop &gt;20 Ohm and plateau formation of LI. Further ablation strategy was left to the investigator’s discretion. Esophageal temperature measurement was performed using a three thermistor catheter with temperature cut off 39.0°C. In case of temperature rise or very near esophageal contact to the circumferential line, RF application time was shortened to 7s. Patients underwent adenosine testing after PVI. Previously we performed all types of AF ablation using an LI guided HPSD ablation without contact force measurement capability in 80 patients. Results Complete PVI was achieved in all pts with only 13.5 ± 4.3 min cumulative RF application duration and an ablation procedure duration of 46.5 ± 10.4 min with the novel LI measuring catheter. First-pass isolation of ipsilateral veins was achieved in 75% of circles. Recurrence of PV conduction during waiting period (20min) and adenosine testing occured in 25% of circles, and was reablated in most patients with a single spot of HPSD application. Using 94 ± 36 RF application per patient, mean maximum LI drop was 23.6 ± 4.0 Ohm. Reconnected fibers were associated with low LI drop due to instability of contact in most cases due to breathing in case of difficult sedation of the patients. No serious complications occurred in all 32 pts using HPSD with the novel contact force catheter design. Conclusion Guiding of HPSD RF ablation by LI is highly efficient and safe. A novel local impedance algorithm in combination with contact force sensing enable short PVI times with low early recurrence of PV conduction. Prediction of permanent lesions seems possible and the only limitation seems to be unstable RF catheter contact due patients breathing. Follow up have to be waited.


Author(s):  
Marc Kottmaier ◽  
Leonie Förschner ◽  
Nada Harfoush ◽  
Felix Bourier ◽  
Sarah Mayr ◽  
...  

Background High power short duration (HPSD) radiofrequency-ablation (RFA) is highly efficient and safe while reducing procedure and RF time in pulmonary vein isolation (PVI). The QDot-catheter is a novel contact-force ablation catheter that allows automated flow and power adjustments depending on the local tissue temperature to maintain a target temperature during 90watts/4seconds lesions. We analysed intraprocedural data and periprocedural safety using the QDot-catheter in patients undergoing PVI for paroxysmal atrial fibrillation (PAF). Methods We included n=48 patients undergoing PVI with the QDot-catheter with a temperature controlled HPSD ablation mode with 90watts/4seconds (TC-HPSD). If focal reconnection occurred besides repeat ablation the ablation mode was changed to 50watts/15seconds (QMode). N=23 patients underwent cerebral MRI to detect silent cerebral lesions. Results Mean RF-time was 8.1+/-2.8min, procedure-duration was 84.5+/-30min. The overall maximal measured catheter-tip temperature was 52.0°C +/- 4.6°C, mean overall applied current was 871mA +/-44mA and over all applied energy was 316J +/-47J. The mean local impedance-drop was 12.1 +/- 2.4 Ohms. During Adenosine challenge n=14 (29%) patients showed dormant conduction. A total of n=24 steam pops were detected in n=18 patients (39.1%), while no pericardial tamponade occurred. No periprocedural thromboembolic complications occurred, while n=4 patients (17.4%) showed silent cerebral lesion. Conclusion TC-HPSD ablation with 90watts/4seconds using the QDot-catheter led to a reduction of procedure and RF time, while no major complications occurred. Despite optimized temperature control and power adjustment steam pops occurred in a rather high number of patients, while none of them lead to tamponade or to clinical or neurological deficits.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
H Puererfellner ◽  
T De Potter ◽  
J Vijgen ◽  
M Grimaldi ◽  
A Natale ◽  
...  

Abstract Background/Introduction The novel catheter with 6 thermocouples for real-time temperature monitoring during irrigated radiofrequency ablation was designed to potentially enhance safety and effectiveness of the Smart Touch Surround Flow (STSF) catheter by incorporating real-time temperature sensing. A supplementary, novel algorithm was developed to modulate power to maintain target temperature during high power/short duration ablation (90W, 4s). Purpose This sub-analysis was performed to examine consistency and reproducibility of the procedural efficiencies and acute success of the novel catheter with optimized temperature control and microelectrodes in treating paroxysmal atrial fibrillation (PAF) across multiple sites from two initial feasibility studies, in standard (QMODE) and high power/short duration (QMODE+) temperature-control ablation modes. Methods The QDOT-MICRO (QMODE, NCT02944968; N=42) and QDOT-FAST (QMODE+, NCT03459196; N=52) studies were both prospective, non-randomized multi-center, clinical investigations completed across 6 and 7 centers, respectively, in Europe. Procedural efficiencies and acute success (PVI via entrance block) was examined across sites within the study. Results In the QDOT-MICRO study, median procedure time (105–155 min), RF ablation time (27.7–39.5 min), and fluoroscopy times (2.2–8 min) during QMODE ablation were similar across the 6 sites. In QMODE+ ablation, median procedure time, RF ablation time, and fluoroscopy times all fall within (84–134 min), (4.8–9.7 min) and (1.1–9.6 min), respectively, across the 7 sites. Fluid delivery by the study catheter was low in both studies: QDOT-MICRO 547±278mL (mean ± SD); QDOT-FAST 382±299. mL (mean ± SD); which is 39.1 and 57.4% lower, respectively, than reported in the SMART SF trial. Esophageal temperature probe was used in the majority of patients (30/42 for QDOT MICRO and 51/52 for QDOT-FAST). Acute PVI was successful in 100% of patients in both studies with no deaths or unanticipated AEs. Conclusion(s) In both feasibility studies, procedural efficiencies were reproducible across study sites in both QMODE and QMODE+, with 100% acute success and good safety outcomes. Efficiencies are likely to improve with further experience. These results need to be confirmed in larger trials. Acknowledgement/Funding Both Studies are Company Sponsored Studies funded by Biosense Webster, Inc.


Sign in / Sign up

Export Citation Format

Share Document