scholarly journals Genetic and ecophysiological traits ofSynechococcusstrains isolated from coastal and open ocean waters of the Arabian Sea

2016 ◽  
Vol 92 (11) ◽  
pp. fiw162 ◽  
Author(s):  
Suchandan Bemal ◽  
Arga Chandrashekar Anil
2006 ◽  
Vol 3 (3) ◽  
pp. 665-695 ◽  
Author(s):  
S. W. A. Naqvi ◽  
H. Naik ◽  
A. Pratihary ◽  
W. D’ Souza ◽  
P. V. Narvekar ◽  
...  

Abstract. The Arabian Sea contains one of the three major open-ocean denitrification zones in the world. In addition, pelagic denitrification also occurs over the inner and mid-shelf off the west coast of India. The major differences between the two environments are highlighted using the available data. The perennial open-ocean system occupies two orders of magnitude larger volume than the seasonal coastal system, however, the latter offers more extreme conditions (greater nitrate consumption leading to complete anoxia). Unlike the open-ocean system, the coastal system seems to have undergone a change (i.e., it has intensified) over the past few decades presumably due to enhanced nutrient loading from land. The two systems also differ from each other with regard to the modes of nitrous oxide (N2O) production: in the open-ocean suboxic zone, an accumulation of secondary nitrite (NO2−) is invariably accompanied by depletion of N2O whereas in the coastal suboxic zone high NO2− and very high N2O concentrations frequently co-occur, indicating, respectively, net consumption and net production of N2O by denitrifiers. The extents of heavier isotope enrichment in the combined nitrate and nitrite (NO3−+NO2−) pool and in N2O in reducing waters appear to be considerably smaller in the coastal region, reflecting more varied sources/sinks and/or different isotopic fractionation factors.


2000 ◽  
Vol 47 (9-11) ◽  
pp. 2155-2178 ◽  
Author(s):  
Tim Rixen ◽  
Birgit Haake ◽  
Venugopalan Ittekkot
Keyword(s):  

2006 ◽  
Vol 43 ◽  
pp. 79-93 ◽  
Author(s):  
NJ Fuller ◽  
C Campbell ◽  
DJ Allen ◽  
FD Pitt ◽  
K Zwirglmaier ◽  
...  
Keyword(s):  

2006 ◽  
Vol 3 (4) ◽  
pp. 621-633 ◽  
Author(s):  
S. W. A. Naqvi ◽  
H. Naik ◽  
A. Pratihary ◽  
W. D'Souza ◽  
P. V. Narvekar ◽  
...  

Abstract. The Arabian Sea contains one of the three major open-ocean denitrification zones in the world. In addition, pelagic denitrification also occurs over the inner and mid-shelf off the west coast of India. The major differences between the two environments are highlighted using the available data. The perennial open-ocean system occupies two orders of magnitude larger volume than the seasonal coastal system, however, the latter offers more extreme conditions (greater nitrate consumption leading to complete anoxia). Unlike the open-ocean system, the coastal system seems to have undergone a change (i.e., it has intensified) over the past few decades presumably due to enhanced nutrient loading from land. The two systems also differ from each other with regard to the modes of nitrous oxide (N2O) production: In the open-ocean suboxic zone, an accumulation of secondary nitrite (NO2−) is invariably accompanied by depletion of N2O whereas in the coastal suboxic zone high NO2− and very high N2O concentrations frequently co-occur, indicating, respectively, net consumption and net production of N2O by denitrifiers. The extents of heavier isotope enrichment in the combined nitrate and nitrite (NO3−+NO2−) pool and in N2O in reducing waters appear to be considerably smaller in the coastal region, reflecting more varied sources/sinks and/or different isotopic fractionation factors.


Author(s):  
He Wang ◽  
Julie L. McClean ◽  
Lynne D. Talley

AbstractThe Arabian Sea, influenced by the Indian monsoon, has many unique features including its basin scale seasonally reversing surface circulation and the Great Whirl, a seasonal anti-cyclonic system appearing during the southwest monsoon close to the western boundary. To establish a comprehensive dynamical picture of the Arabian Sea, we utilize numerical model output and design a full vorticity budget that includes a fully-decomposed nonlinear term. The ocean general circulation model has 0.1° resolution and is mesoscale eddy-resolving in the region. In the western boundary current system, we highlight the role of nonlinear eddies in the life cycle of the Great Whirl. The nonlinear eddy term is of leading order importance in this feature’s vorticity balance. Specifically, it contributes to the Great Whirl’s persistence in boreal fall after the weakening of the southwesterly winds. In the open ocean, Sverdrup dynamics and annual Rossby waves are found to dominate the vorticity balance; the latter is considered as a key factor in the formation of the Great Whirl and the sea-sonal reversal of the western boundary current. In addition, we discuss different forms of vertically-integrated vorticity equations in the model and argue that the bottom pressure torque term can be interpreted analogously as friction in the western boundary and vortex stretching in the open ocean.


Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
N Ebrahimi ◽  
M Moein ◽  
S Moein

2014 ◽  
Vol 73 (1) ◽  
pp. 51-67 ◽  
Author(s):  
A Jain ◽  
M Bandekar ◽  
J Gomes ◽  
D Shenoy ◽  
RM Meena ◽  
...  

2020 ◽  
Vol 638 ◽  
pp. 149-164
Author(s):  
GM Svendsen ◽  
M Ocampo Reinaldo ◽  
MA Romero ◽  
G Williams ◽  
A Magurran ◽  
...  

With the unprecedented rate of biodiversity change in the world today, understanding how diversity gradients are maintained at mesoscales is a key challenge. Drawing on information provided by 3 comprehensive fishery surveys (conducted in different years but in the same season and with the same sampling design), we used boosted regression tree (BRT) models in order to relate spatial patterns of α-diversity in a demersal fish assemblage to environmental variables in the San Matias Gulf (Patagonia, Argentina). We found that, over a 4 yr period, persistent diversity gradients of species richness and probability of an interspecific encounter (PIE) were shaped by 3 main environmental gradients: bottom depth, connectivity with the open ocean, and proximity to a thermal front. The 2 main patterns we observed were: a monotonic increase in PIE with proximity to fronts, which had a stronger effect at greater depths; and an increase in PIE when closer to the open ocean (a ‘bay effect’ pattern). The originality of this work resides on the identification of high-resolution gradients in local, demersal assemblages driven by static and dynamic environmental gradients in a mesoscale seascape. The maintenance of environmental gradients, specifically those associated with shared resources and connectivity with an open system, may be key to understanding community stability.


Sign in / Sign up

Export Citation Format

Share Document