scholarly journals Long-term effects of single-tree selection cutting on structure and composition in upland mixed-hardwood forests of the southern Appalachian Mountains

2012 ◽  
Vol 86 (2) ◽  
pp. 255-265 ◽  
Author(s):  
T. L. Keyser ◽  
D. L. Loftis
Fire ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 20
Author(s):  
Christopher J. Dukes ◽  
T. Adam Coates ◽  
Donald L. Hagan ◽  
W. Michael Aust ◽  
Thomas A. Waldrop ◽  
...  

From 2001–2018, a series of fuel reduction and ecosystem restoration treatments were implemented in the southern Appalachian Mountains near Asheville, North Carolina, USA. Treatments consisted of prescribed fire (four burns), mechanical cutting of understory shrubs and mid-story trees (two cuttings), and a combination of both cutting and prescribed fire (two cuts + four burns). Soils were sampled in 2018 to determine potential treatment impacts for O horizon and mineral soil (0–10 cm depth) carbon (C) and nitrogen (N) and mineral soil calcium (Ca), magnesium (Mg), phosphorus (P), potassium (K), and pH. Results suggested that mean changes in O horizon C and N and mineral soil C, N, C:N, Ca, and P from 2001–2018 differed between the treatments, but only mineral soil C, N, C:N, and Ca displayed differences between at least one fuel reduction treatment and the untreated control. One soils-related restoration objective was mineral soil N reduction and the cut + burn treatment best achieved this result. Increased organic matter recalcitrance was another priority, but this was not obtained with any treatment. When paired with previously reported fuels and vegetation results from this site, it appeared that continued use of the cut + burn treatment may best achieve long-term management objectives for this site and other locations being managed for similar long-term restoration and fuels management objectives.


2012 ◽  
Vol 11 (4) ◽  
pp. 669-688 ◽  
Author(s):  
Tara L. Keyser ◽  
Tracy Roof ◽  
Jacquelyne L. Adams ◽  
Dean Simon ◽  
Gordon Warburton

2019 ◽  
Vol 49 (12) ◽  
pp. 1525-1539 ◽  
Author(s):  
Sarita Bassil ◽  
Ralph D. Nyland ◽  
Christel C. Kern ◽  
Laura S. Kenefic

Selection cutting is defined as a tool for uneven-aged silviculture. Dependence on diameter distribution by forestry practitioners for identifying stand conditions has led to misuse of selection-like cuttings in even-aged northern hardwood stands. Our study used several long-term data sets to investigate the temporal stability in numbers of trees per diameter class in uneven-aged northern hardwood stands treated with single-tree selection and in 45-year-old second-growth stands treated with selection-like cuttings. We analyzed data from New York, Michigan, and Wisconsin to determine changes through time in number of trees across 2.5 cm diameter classes, shifts in the shape and scale of the three-parameter Weibull function used to describe the diameter distributions, and dynamics of associated stand attributes. Findings showed that single-tree selection cutting created and sustained stable diameter distributions and uniformity of conditions through consecutive entries in uneven-aged stands. By contrast, these characteristics varied through time in the second-growth stands that had been treated with selection-like cuttings. Analysis also showed that the Weibull shape and scale parameters for stands under selection system migrated towards those of the recommended target diameter distribution in the uneven-aged stands. These parameters diverged from the target with repeated use of selection-like cuttings in the second-growth even-aged stands.


2007 ◽  
Vol 15 (3) ◽  
pp. 400-411 ◽  
Author(s):  
Charles W. Lafon ◽  
John D. Waldron ◽  
David M. Cairns ◽  
Maria D. Tchakerian ◽  
Robert N. Coulson ◽  
...  

Castanea ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. 128
Author(s):  
John R. Butnor ◽  
Brittany M. Verrico ◽  
Kurt H. Johnsen ◽  
Christopher A. Maier ◽  
Victor Vankus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document