scholarly journals Loss of Adam10 disrupts ion transport in immortalised kidney collecting duct cells

Function ◽  
2021 ◽  
Author(s):  
Adrienne Assmus ◽  
Linda Mullins ◽  
Mairi Ward ◽  
Ross Dobie ◽  
Robert Hunter ◽  
...  

Abstract The kidney cortical collecting duct (CCD) comprises of principal cells (PC), intercalated cells (IC) and the recently discovered intermediate cell type. Kidney pathology in a mouse model of the syndrome of apparent aldosterone excess (SAME) revealed plasticity of the cortical collecting duct (CCD), with altered principal cell (PC): intermediate cell: intercalated cell (IC) ratio. The self-immortalized mouse CCD cell line, mCCDcl1, shows functional characteristics of PCs but displays a range of cell types, including intermediate cells, making it ideal to study plasticity. We knocked out Adam10, a key component of the Notch pathway, in mCCDcl1 cells, using CRISPR-Cas9 technology, and isolated independent clones, which exhibited severely affected sodium transport capacity and loss of aldosterone response. Single-cell RNA sequencing revealed significantly reduced expression of major PC-specific markers, such as Scnn1g (γ-ENaC) and Hsd11b2 (11ßHSD2), but no significant changes in transcription of components of the Notch pathway were observed. Immunostaining in the knockout clone confirmed the decrease in expression of γ-ENaC and importantly, showed an altered, diffuse distribution of PC and IC markers, suggesting altered trafficking in the Adam10 knockout clone as an explanation for the loss of polarisation.


1998 ◽  
Vol 111 (23) ◽  
pp. 3529-3539 ◽  
Author(s):  
T.L. Woodward ◽  
M.A. Sia ◽  
O.W. Blaschuk ◽  
J.D. Turner ◽  
D.W. Laird

Epithelial, fibroblast and intermediate cell lines were employed to examine the mechanism(s) essential for heterocellular gap junction intercellular communication in vitro. These cell lines were characterized extensively for cell type based on morphology, intermediate cytoskeletal proteins, cell adhesion molecules and their associated proteins, tight junction proteins as well as functional differentiation. All cell types expressed connexin43 and were dye-coupled in homocellular culture. Epithelial and intermediate cells or fibroblasts and intermediate cells readily assembled heterocellular connexin43-positive gap junction plaques when co-cultured, while gap junction plaques in mixed cultures of epithelial cells and fibroblasts were rare. Dye microinjection studies were used to show that there was little gap junction intercellular communication between epithelial cells and fibroblasts. However, intermediate cells were able to communicate with epithelial cells and, to a lesser extent, fibroblasts and could transfer dye to both epithelial cells and fibroblasts when all three cell types were cultured together. Fibroblasts that were stably transfected with a cDNA encoding E-cadherin had a greater tendency to aggregate and exhibited a more epithelial-like phenotype but heterocellular gap junction intercellular communication with epithelial cells, which endogenously express E-cadherin, was not enhanced. These results suggest that mutual expression of E-cadherin is insufficient to stimulate gap junction formation between epithelial cells and fibroblasts. Moreover, our results also demonstrate that communication gaps between epithelial cells and fibroblasts can be bridged by intermediate cells, a process that may be important in mammary gland development, growth, differentiation and cancer.



1996 ◽  
Vol 270 (1) ◽  
pp. F237-F244 ◽  
Author(s):  
K. M. Todd-Turla ◽  
E. Rusvai ◽  
A. Naray-Fejes-Toth ◽  
G. Fejes-Toth

The cystic fibrosis transmembrane conductance regulator (CFTR) is a adenosine 3',5'-cyclic monophosphate-activated chloride channel located in the apical membrane of many epithelial cells, and it may play a significant role in the kidney. Recent functional evidence from our laboratory suggests that CFTR may be expressed by the cortical collecting duct (CCD). Therefore, in the present study, the reverse transcription-polymerase chain reaction (RT-PCR) technique was utilized to detect CFTR mRNA in the M-1 mouse CCD cell line and in immunoselected rabbit CCD cells. Primers were constructed to amplify the cDNA sequence encoding the first nucleotide binding domain of CFTR. CFTR PCR products were obtained from both M-1 and rabbit CCD cDNA preparations. The identify of the product amplified from M-1 cell cDNA was confirmed by restriction digestion analysis. The rabbit CCD PCR product was sequenced, and its deduced amino acid sequence was found to be 97% homologous to the corresponding regions of human CFTR. The level of CFTR cDNA detected after 30 cycles of amplification of CCD cDNA was only 49 +/- 8 (n = 9) times lower than the level of beta-actin PCR product obtained from the same sample, suggesting that the levels of CFTR mRNA present in the CCD are physiologically relevant. Northern analysis, using a cRNA probe corresponding to the amplified region on the mRNA from CCD cells, revealed a single hybridizing species with a size of approximately 6.5 kb. Finally, CFTR PCR was performed with cDNA preparations originating from principal cells (PC), beta-intercalated cells (beta-ICC), and alpha-ICC obtained by fluorescence-activated cell sorting of rabbit CCD. CFTR PCR products were obtained from all three cell types, with the most abundant levels found in beta-ICC. beta-ICC expressed 25-fold (n = 4, P < 0.001) and 4.5-fold (n = 7, P < 0.001) higher levels than PC and alpha-ICC, respectively. This distribution pattern suggests that, within the CCD, CFTR plays a role primarily in beta-ICC function.



2001 ◽  
Vol 81 (1) ◽  
pp. 85-116 ◽  
Author(s):  
Shigeaki Muto

The mammalian collecting duct plays a dominant role in regulating K+ excretion by the nephron. The collecting duct exhibits axial and intrasegmental cell heterogeneity and is composed of at least two cell types: collecting duct cells (principal cells) and intercalated cells. Under normal circumstances, the collecting duct cell in the cortical collecting duct secretes K+, whereas under K+ depletion, the intercalated cell reabsorbs K+. Assessment of the electrochemical driving forces and of membrane conductances for transcellular and paracellular electrolyte movement, the characterization of several ATPases, patch-clamp investigation, and cloning of the K+ channel have provided important insights into the role of pumps and channels in those tubule cells that regulate K+ secretion and reabsorption. This review summarizes K+ transport properties in the mammalian collecting duct. Special emphasis is given to the mechanisms of how K+ transport is regulated in the collecting duct.





1996 ◽  
Vol 270 (4) ◽  
pp. C998-C1010 ◽  
Author(s):  
M. L. Chalfant ◽  
T. G. O'Brien ◽  
M. M. Civan

Amiloride-sensitive whole cell currents have been reported in M-1 mouse cortical collecting duct cells (Korbmacher et al., J. Gen. Physiol. 102: 761-793, 1993). We have confirmed that amiloride inhibits the whole cell currents but not necessarily the measured whole cell currents. Anomalous responses were eliminated by removing external Na+ and/or introducing paraepithelial shunts. The amiloride-sensitive whole cell currents displayed Goldman rectification. The ionic selectivity sequence of the amiloride-sensitive conductance was Li+ > Na+ >> K+. Growth of M-1 cells on permeable supports increased the amiloride-sensitive whole cell permeability, compared with cells grown on plastic. Single amiloride-sensitive channels were observed, which conformed to the highly selective low-conductance amiloride-sensitive class [Na(5)] of epithelial Na+ channels. Hypotonic pretreatment markedly slowed run-down of channel activity. The gating of the M-1 Na+ channel in excised patches was complex. Open- and closed-state dwell-time distributions from patches that display one operative channel were best described with two or more exponential terms each. We conclude that 1) study of M-1 whole cell Na+ currents is facilitated by reducing the transepithelial potential to zero, 2) these M-1 currents reflect the operation of Na(5) channels, and 3) the Na+ channels display complex kinetics, involving > or = 2 open and > or = 2 closed states.



2013 ◽  
Vol 304 (4) ◽  
pp. F422-F431 ◽  
Author(s):  
Jesse M. Bishop ◽  
Hyun-Wook Lee ◽  
Mary E. Handlogten ◽  
Ki-Hwan Han ◽  
Jill W. Verlander ◽  
...  

The ammonia transporter family member, Rh B Glycoprotein (Rhbg), is an ammonia-specific transporter heavily expressed in the kidney and is necessary for the normal increase in ammonia excretion in response to metabolic acidosis. Hypokalemia is a common clinical condition in which there is increased renal ammonia excretion despite the absence of metabolic acidosis. The purpose of this study was to examine Rhbg's role in this response through the use of mice with intercalated cell-specific Rhbg deletion (IC-Rhbg-KO). Hypokalemia induced by feeding a K+-free diet increased urinary ammonia excretion significantly. In mice with intact Rhbg expression, hypokalemia increased Rhbg protein expression in intercalated cells in the cortical collecting duct (CCD) and in the outer medullary collecting duct (OMCD). Deletion of Rhbg from intercalated cells inhibited hypokalemia-induced changes in urinary total ammonia excretion significantly and completely prevented hypokalemia-induced increases in urinary ammonia concentration, but did not alter urinary pH. We conclude that hypokalemia increases Rhbg expression in intercalated cells in the cortex and outer medulla and that intercalated cell Rhbg expression is necessary for the normal increase in renal ammonia excretion in response to hypokalemia.



2017 ◽  
Vol 31 (12) ◽  
pp. 5399-5408 ◽  
Author(s):  
Viet D. Dang ◽  
Kishore Kumar Jella ◽  
Ragy R. T. Ragheb ◽  
Nancy D. Denslow ◽  
Abdel A. Alli




1998 ◽  
Vol 274 (4) ◽  
pp. F736-F743 ◽  
Author(s):  
Joost G. J. Hoenderop ◽  
Anita Hartog ◽  
Peter H. G. M. Willems ◽  
René J. M. Bindels

Confluent monolayers of immunodissected rabbit connecting tubule and cortical collecting duct cells, cultured on permeable supports, were used to study the effect of adenosine on net apical-to-basolateral Ca2+ transport. Apical, but not basolateral, adenosine increased this transport dose dependently from 48 ± 3 to 110 ± 4 nmol ⋅ h−1 ⋅ cm−2. Although a concomitant increase in cAMP formation suggested the involvement of an A2 receptor, the A2 agonist CGS-21680 did not stimulate Ca2+ transport, while readily increasing cAMP. By contrast, the A1 agonist N 6-cyclopentyladenosine (CPA) maximally stimulated Ca2+transport without significantly affecting cAMP. Adenosine-stimulated transport was effectively inhibited by the A1 antagonist 1,3-dipropyl-8-cyclopenthylxanthine but not the A2 antagonist 3,7-dimethyl-1-propargylxanthine, providing additional evidence for the involvement of an A1 receptor. Both abolishment of the adenosine-induced transient increase in intracellular Ca2+ concentration by 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid and downregulation of protein kinase C (PKC) by prolonged phorbol ester treatment were without effect on adenosine-stimulated Ca2+ transport. The data presented suggest that adenosine interacts with an apical A1 receptor to stimulate Ca2+ transport via a hitherto unknown pathway that does not involve cAMP formation, PKC activation, and/or Ca2+ mobilization.



Sign in / Sign up

Export Citation Format

Share Document